Home

Awesome

Tip and tricks for VCF files

Usefull tools

Samtools organisation and repositories

Compilation (from here):

git clone --branch=develop git://github.com/samtools/htslib.git
git clone --branch=develop git://github.com/samtools/bcftools.git
git clone --branch=develop git://github.com/samtools/samtools.git
cd bcftools; make
cd ../samtools; make
cd ../htslib; make

Other tools

Use R VariantAnnotation bioconductor package

All the commands below assume the package VariantAnnotation has been loaded into R using library(VariantAnnotation).

Replace INFO/DP field with GENO/DP field

vcf <- readVcf("test.vcf", "hg19")
info(vcf)$DP=geno(vcf)$DP
writeVcf(vcf,"test.vcf")

Create a new INFO field

Here it's called DP_Tand filled with . (dot represent missing values in VCF files) but it could be anything you like.

vcf <- readVcf("test.vcf", "hg19")
newInfo <- DataFrame(Number=1, Type="Integer",Description="DP in normal",row.names="DP_N")
info(header(vcf)) <- rbind(info(header(vcf)), newInfo)
info(vcf)$DP_N="."
writeVcf(vcf,"test.vcf")

Split a multi-sample VCF into n-single sample VCFs

vcf_file = "test.vcf"
for (cur_sample in samples(scanVcfHeader(vcf_file))) {
  writeVcf(readVcf(vcf_file, "hg19",ScanVcfParam(sample = cur_sample)),paste(cur_sample,".vcf",sep = ""))
}

Manually processing VCF in R

Look at these functions too: https://github.com/sahilseth/vcfparser

Extract expected Q-value from a needlestack calling

Once a needlestack calling has been launch, user can want to compute what would be the Q-value of a particular sample at a particular position. This could help controlling the false negative rate.
Given a VCF chunk from VariantAnnotation bioconductor package, a sample ID and a particular mutation, this function extract the corresponding Q-value.

Loading a VCF file as a data frame

On Unix systems (Mac or Linux), automatically pipe it with grep and sed to remove the header.

my_vcf=read.table(pipe("grep -v '^##' test.vcf | sed s/^#//"),stringsAsFactors=F,header=T,sep="\t")

On Windows, you can manually remove the header lines (starting with ##) and also the # character from the line containing the column names. After that you can read it using:

my_vcf=read.table("test_noheader.vcf",stringsAsFactors=F,header=T,sep="\t")

Two R functions to extract values from INFO or GENOTYPE fields

Gist: https://gist.github.com/mfoll/a4dfbb92068dc559f130

get_info=function(info,field,num=T) {
  get_single_info=function(single_info,field) {
    grep_res=grep(paste("^",field,"=",sep=""),unlist(strsplit(single_info,";")),value=T)
    if (length(grep_res)>0) strsplit(grep_res,"=")[[1]][2] else NA
  }
  res=unlist(lapply(info,get_single_info,field))
  if (num) as.numeric(res) else res
}

get_genotype=function(genotype,format,field,num=T) {
  get_single_genotype=function(single_genotype,format,field) {
    single_res=unlist(strsplit(single_genotype,":"))[which(unlist(strsplit(format,":"))==field)]
    if (length(single_res)>0) single_res else NA
  }
  res=unlist(lapply(genotype,get_single_genotype,format,field))
  if (num) as.numeric(res) else res
}

Both function are vectorized (i.e. you can give them a vector of INFO fields or a vector of GENOTYPE fields. The genotype field requires that you give the format of the field (for example "GT:AO:DP"). In both functions the field argument indicates which field you want to extract. By default the result is converted to a numeric value, unless you specify num=FALSE when you call the functions.

Get genotype columns and sample names:

# list of columns containing sample specific data
GT_cols=(which(names(my_vcf)=="FORMAT")+1):ncol(my_vcf)
# extract sample names
SM=names(my_vcf)[GT_cols]

Get number of variants for each position in a VCF file

Following function returns, for each position in the input VCF file, the number of samples having a QVALUE higher than the input threshold (QVAL_thr, default=50), i.e. the number of variants.

# after reading a VCF with read.table(), see last example
get_number_of_variants <- function(vcf, QVAL_thr = 50){
  unlist(lapply(1:nrow(vcf), function(i) {
    all_QVAL = unlist(lapply((which(colnames(vcf)=="FORMAT")+1) : ncol(vcf),
                             function(id) get_genotype(vcf[i,id], vcf[i,"FORMAT"], field = "QVAL") ))
    sum(all_QVAL>=QVAL_thr)
  }))
}

Using all the above

This assumes that you have a my_vcf data frame loaded, the two functions above and the objects GT_cols and SM.

You can replace "MY_SAMPLE" with SM[1] to take the first sample without typing manually its name (usefull if you have only one for example).

Built a TSV file, from VCF to extract a particular field from FORMAT

extract_FORMAT_vcf.r is a script which extract, for each variant in the VCF, and for each sample, the value of a field in FORMAT.
Example of command line:

Rscript extract_FORMAT_vcf.r --input_vcf=testepic.vcf.gz --field=DS

Manually processing VCF in bash

Split a n-samples VCF

This bash script splits a big VCF from n samples into n VCF with file name = sample name (save these lines into big_VCF_to_samples.sh)

Gist : https://gist.github.com/tdelhomme/cb28dec176b55c43e887

#!/bin/bash

if [ $# -eq 0 ]; then #if no provided parameters
  echo 'usage : ./big_VCF_to_samples.sh <input big VCF> <result folder>'
else
  mkdir -p $2
  IFS= read -a array <<< $(grep "#CHROM" $1 | head -1 | awk '{for(i=10;i<=NF;++i)print $i}')
  samples=${array[0]}
  for i in `seq 1 $(echo "$samples" | wc -w)`;
  do
    bcftools view -s $(echo "$samples" | cut -d" " -f$i) $1 > $2"/"$(echo "$samples" | cut -d" " -f$i).vcf
  done
fi

Generate a sorted and merged BED file from positions in a VCF

awk '{ if (!/^#/) print $1"	"$2"	"$2+1}' input.vcf | sort -k1,1 -k2,2n | bedtools merge -i stdin

Compute number of positions in a bed file

cat mybedfile.bed | awk -F'\t' 'BEGIN{SUM=0}{ SUM+=$3-$2+1 }END{print SUM}'

Get the samples ID from a VCF

grep "^#CHROM" input.vcf | tr '\t' '\n' | grep -v -E '#CHROM|POS|ID|REF|ALT|QUAL|FILTER|INFO|FORMAT'

Downsample a VCF

Here a zipped one (assuming the header is less than 10000 lines), from which we randomly extract 1 million lines:

(zcat human_9606_b150_GRCh38p7.vcf.gz | head -n 10000 | zgrep ^# ; zgrep -v ^# human_9606_b150_GRCh38p7.vcf.gz | shuf -n 1000000 | LC_ALL=C sort -k1,1V -k2,2n) | gzip > human_9606_b150_GRCh38p7_small.vcf.gz