Awesome
Deployment of BEV 3D Detection on TensorRT
This repository is a deployment project of BEV 3D Detection (including BEVFormer, BEVDet) on TensorRT, supporting FP32/FP16/INT8 inference. Meanwhile, in order to improve the inference speed of BEVFormer on TensorRT, this project implements some TensorRT Ops that support nv_half, nv_half2 and INT8. With the accuracy almost unaffected, the inference speed of the BEVFormer base can be increased by more than four times, the engine size can be reduced by more than 90%, and the GPU memory usage can be saved by more than 80%. In addition, the project also supports common 2D object detection models in MMDetection, which support INT8 Quantization and TensorRT Deployment with a small number of code changes.
Benchmarks
BEVFormer
BEVFormer PyTorch
Model | Data | Batch Size | NDS/mAP | FPS | Size (MB) | Memory (MB) | Device |
---|---|---|---|---|---|---|---|
BEVFormer tiny<br />download | NuScenes | 1 | NDS: 0.354<br/>mAP: 0.252 | 15.9 | 383 | 2167 | RTX 3090 |
BEVFormer small<br />download | NuScenes | 1 | NDS: 0.478<br/>mAP: 0.370 | 5.1 | 680 | 3147 | RTX 3090 |
BEVFormer base<br />download | NuScenes | 1 | NDS: 0.517<br/>mAP: 0.416 | 2.4 | 265 | 5435 | RTX 3090 |
BEVFormer TensorRT with MMDeploy Plugins (Only Support FP32)
Model | Data | Batch Size | Float/Int | Quantization Method | NDS/mAP | FPS | Size (MB) | Memory (MB) | Device |
---|---|---|---|---|---|---|---|---|---|
BEVFormer tiny | NuScenes | 1 | FP32 | - | NDS: 0.354<br/>mAP: 0.252 | 37.9 (x1) | 136 (x1) | 2159 (x1) | RTX 3090 |
BEVFormer tiny | NuScenes | 1 | FP16 | - | NDS: 0.354<br/>mAP: 0.252 | 69.2 (x1.83) | 74 (x0.54) | 1729 (x0.80) | RTX 3090 |
BEVFormer tiny | NuScenes | 1 | FP32/INT8 | PTQ entropy<br />per-tensor | NDS: 0.353<br/>mAP: 0.249 | 65.1 (x1.72) | 58 (x0.43) | 1737 (x0.80) | RTX 3090 |
BEVFormer tiny | NuScenes | 1 | FP16/INT8 | PTQ entropy<br />per-tensor | NDS: 0.353<br/>mAP: 0.249 | 70.7 (x1.87) | 54 (x0.40) | 1665 (x0.77) | RTX 3090 |
BEVFormer small | NuScenes | 1 | FP32 | - | NDS: 0.478<br/>mAP: 0.370 | 6.6 (x1) | 245 (x1) | 4663 (x1) | RTX 3090 |
BEVFormer small | NuScenes | 1 | FP16 | - | NDS: 0.478<br/>mAP: 0.370 | 12.8 (x1.94) | 126 (x0.51) | 3719 (x0.80) | RTX 3090 |
BEVFormer small | NuScenes | 1 | FP32/INT8 | PTQ entropy<br />per-tensor | NDS: 0.476<br/>mAP: 0.367 | 8.7 (x1.32) | 158 (x0.64) | 4079 (x0.87) | RTX 3090 |
BEVFormer small | NuScenes | 1 | FP16/INT8 | PTQ entropy<br />per-tensor | NDS: 0.477<br/>mAP: 0.368 | 13.3 (x2.02) | 106 (x0.43) | 3441 (x0.74) | RTX 3090 |
BEVFormer base * | NuScenes | 1 | FP32 | - | NDS: 0.517<br/>mAP: 0.416 | 1.5 (x1) | 1689 (x1) | 13893 (x1) | RTX 3090 |
BEVFormer base | NuScenes | 1 | FP16 | - | NDS: 0.517<br/>mAP: 0.416 | 1.8 (x1.20) | 849 (x0.50) | 11865 (x0.85) | RTX 3090 |
BEVFormer base * | NuScenes | 1 | FP32/INT8 | PTQ entropy<br />per-tensor | NDS: 0.516<br/>mAP: 0.414 | 1.8 (x1.20) | 426 (x0.25) | 12429 (x0.89) | RTX 3090 |
BEVFormer base * | NuScenes | 1 | FP16/INT8 | PTQ entropy<br />per-tensor | NDS: 0.515<br/>mAP: 0.414 | 2.2 (x1.47) | 244 (x0.14) | 11011 (x0.79) | RTX 3090 |
* Out of Memory
when onnx2trt with TensorRT-8.5.1.7, but they convert successfully with TensorRT-8.4.3.1. So the version of these engines is TensorRT-8.4.3.1.
BEVFormer TensorRT with Custom Plugins (Support nv_half, nv_half2 and int8)
FP16 Plugins with nv_half
Model | Data | Batch Size | Float/Int | Quantization Method | NDS/mAP | FPS/Improve | Size (MB) | Memory (MB) | Device |
---|---|---|---|---|---|---|---|---|---|
BEVFormer tiny | NuScenes | 1 | FP32 | - | NDS: 0.354<br/>mAP: 0.252 | 40.0 (x1.06) | 135 (x0.99) | 1693 (x0.78) | RTX 3090 |
BEVFormer tiny | NuScenes | 1 | FP16 | - | NDS: 0.355<br/>mAP: 0.252 | 81.2 (x2.14) | 70 (x0.51) | 1203 (x0.56) | RTX 3090 |
BEVFormer tiny | NuScenes | 1 | FP32/INT8 | PTQ entropy<br />per-tensor | NDS: 0.351<br/>mAP: 0.249 | 90.1 (x2.38) | 58 (x0.43) | 1105 (x0.51) | RTX 3090 |
BEVFormer tiny | NuScenes | 1 | FP16/INT8 | PTQ entropy<br />per-tensor | NDS: 0.351<br/>mAP: 0.249 | 107.4 (x2.83) | 52 (x0.38) | 1095 (x0.51) | RTX 3090 |
BEVFormer small | NuScenes | 1 | FP32 | - | NDS: 0.478<br/>mAP: 0.37 | 7.4 (x1.12) | 250 (x1.02) | 2585 (x0.55) | RTX 3090 |
BEVFormer small | NuScenes | 1 | FP16 | - | NDS: 0.479<br/>mAP: 0.37 | 15.8 (x2.40) | 127 (x0.52) | 1729 (x0.37) | RTX 3090 |
BEVFormer small | NuScenes | 1 | FP32/INT8 | PTQ entropy<br />per-tensor | NDS: 0.477<br/>mAP: 0.367 | 17.9 (x2.71) | 166 (x0.68) | 1637 (x0.35) | RTX 3090 |
BEVFormer small | NuScenes | 1 | FP16/INT8 | PTQ entropy<br />per-tensor | NDS: 0.476<br/>mAP: 0.366 | 20.4 (x3.10) | 108 (x0.44) | 1467 (x0.31) | RTX 3090 |
BEVFormer base | NuScenes | 1 | FP32 | - | NDS: 0.517<br/>mAP: 0.416 | 3.0 (x2.00) | 292 (x0.17) | 5715 (x0.41) | RTX 3090 |
BEVFormer base | NuScenes | 1 | FP16 | - | NDS: 0.517<br/>mAP: 0.416 | 4.9 (x3.27) | 148 (x0.09) | 3417 (x0.25) | RTX 3090 |
BEVFormer base | NuScenes | 1 | FP32/INT8 | PTQ entropy<br />per-tensor | NDS: 0.515<br/>mAP: 0.414 | 6.9 (x4.60) | 202 (x0.12) | 3307 (x0.24) | RTX 3090 |
BEVFormer base | NuScenes | 1 | FP16/INT8 | PTQ entropy<br />per-tensor | NDS: 0.514<br/>mAP: 0.413 | 8.0 (x5.33) | 131 (x0.08) | 2429 (x0.17) | RTX 3090 |
FP16 Plugins with nv_half2
Model | Data | Batch Size | Float/Int | Quantization Method | NDS/mAP | FPS | Size (MB) | Memory (MB) | Device |
---|---|---|---|---|---|---|---|---|---|
BEVFormer tiny | NuScenes | 1 | FP16 | - | NDS: 0.355<br/>mAP: 0.251 | 84.2 (x2.22) | 72 (x0.53) | 1205 (x0.56) | RTX 3090 |
BEVFormer tiny | NuScenes | 1 | FP16/INT8 | PTQ entropy<br />per-tensor | NDS: 0.354<br/>mAP: 0.250 | 108.3 (x2.86) | 52 (x0.38) | 1093 (x0.51) | RTX 3090 |
BEVFormer small | NuScenes | 1 | FP16 | - | NDS: 0.479<br/>mAP: 0.371 | 18.6 (x2.82) | 124 (x0.51) | 1725 (x0.37) | RTX 3090 |
BEVFormer small | NuScenes | 1 | FP16/INT8 | PTQ entropy<br />per-tensor | NDS: 0.477<br/>mAP: 0.368 | 22.9 (x3.47) | 110 (x0.45) | 1487 (x0.32) | RTX 3090 |
BEVFormer base | NuScenes | 1 | FP16 | - | NDS: 0.517<br/>mAP: 0.416 | 6.6 (x4.40) | 146 (x0.09) | 3415 (x0.25) | RTX 3090 |
BEVFormer base | NuScenes | 1 | FP16/INT8 | PTQ entropy<br />per-tensor | NDS: 0.516<br/>mAP: 0.415 | 8.6 (x5.73) | 159 (x0.09) | 2479 (x0.18) | RTX 3090 |
BEVDet
BEVDet PyTorch
Model | Data | Batch Size | NDS/mAP | FPS | Size (MB) | Memory (MB) | Device |
---|---|---|---|---|---|---|---|
BEVDet R50 CBGS | NuScenes | 1 | NDS: 0.38<br/>mAP: 0.298 | 29.0 | 170 | 1858 | RTX 2080Ti |
BEVDet TensorRT
with Custom Plugin bev_pool_v2 (Support nv_half, nv_half2 and int8), modified from Official BEVDet
Model | Data | Batch Size | Float/Int | Quantization Method | NDS/mAP | FPS | Size (MB) | Memory (MB) | Device |
---|---|---|---|---|---|---|---|---|---|
BEVDet R50 CBGS | NuScenes | 1 | FP32 | - | NDS: 0.38<br/>mAP: 0.298 | 44.6 | 245 | 1032 | RTX 2080Ti |
BEVDet R50 CBGS | NuScenes | 1 | FP16 | - | NDS: 0.38<br/>mAP: 0.298 | 135.1 | 86 | 790 | RTX 2080Ti |
BEVDet R50 CBGS | NuScenes | 1 | FP32/INT8 | PTQ entropy<br />per-tensor | NDS: 0.355<br/>mAP: 0.274 | 234.7 | 44 | 706 | RTX 2080Ti |
BEVDet R50 CBGS | NuScenes | 1 | FP16/INT8 | PTQ entropy<br />per-tensor | NDS: 0.357<br/>mAP: 0.277 | 236.4 | 44 | 706 | RTX 2080Ti |
2D Detection Models
This project also supports common 2D object detection models in MMDetection with little modification. The following are deployment examples of YOLOx and CenterNet.
YOLOx
Model | Data | Framework | Batch Size | Float/Int | Quantization Method | mAP | FPS | Size (MB) | Memory (MB) | Device |
---|---|---|---|---|---|---|---|---|---|---|
YOLOx<br />download | COCO | PyTorch | 32 | FP32 | - | mAP: 0.506 | 63.1 | 379 | 7617 | RTX 3090 |
YOLOx | COCO | TensorRT | 32 | FP32 | - | mAP: 0.506 | 71.3 (x1) | 546 (x1) | 9943 (x1) | RTX 3090 |
YOLOx | COCO | TensorRT | 32 | FP16 | - | mAP: 0.506 | 296.8 (x4.16) | 192 (x0.35) | 4567 (x0.46) | RTX 3090 |
YOLOx | COCO | TensorRT | 32 | FP32/INT8 | PTQ entropy<br />per-tensor | mAP: 0.488 | 556.4 (x7.80) | 99 (x0.18) | 5225 (x0.53) | RTX 3090 |
YOLOx | COCO | TensorRT | 32 | FP16/INT8 | PTQ entropy<br />per-tensor | mAP: 0.479 | 550.6 (x7.72) | 99 (x0.18) | 5119 (x0.51) | RTX 3090 |
CenterNet
Model | Data | Framework | Batch Size | Float/Int | Quantization Method | mAP | FPS | Size (MB) | Memory (MB) | Device |
---|---|---|---|---|---|---|---|---|---|---|
CenterNet<br />download | COCO | PyTorch | 32 | FP32 | - | mAP: 0.299 | 337.4 | 56 | 5171 | RTX 3090 |
CenterNet | COCO | TensorRT | 32 | FP32 | - | mAP: 0.299 | 475.6 (x1) | 58 (x1) | 8241 (x1) | RTX 3090 |
CenterNet | COCO | TensorRT | 32 | FP16 | - | mAP: 0.297 | 1247.1 (x2.62) | 29 (x0.50) | 5183 (x0.63) | RTX 3090 |
CenterNet | COCO | TensorRT | 32 | FP32/INT8 | PTQ entropy<br />per-tensor | mAP: 0.27 | 1534.0 (x3.22) | 20 (x0.34) | 6549 (x0.79) | RTX 3090 |
CenterNet | COCO | TensorRT | 32 | FP16/INT8 | PTQ entropy<br />per-tensor | mAP: 0.285 | 1889.0 (x3.97) | 17 (x0.29) | 6453 (x0.78) | RTX 3090 |
Clone
git clone git@github.com:DerryHub/BEVFormer_tensorrt.git
cd BEVFormer_tensorrt
PROJECT_DIR=$(pwd)
Data Preparation
MS COCO (For 2D Detection)
Download the COCO 2017 datasets to /path/to/coco
and unzip them.
cd ${PROJECT_DIR}/data
ln -s /path/to/coco coco
NuScenes and CAN bus (For BEVFormer)
Download nuScenes V1.0 full dataset data and CAN bus expansion data HERE as /path/to/nuscenes
and /path/to/can_bus
.
Prepare nuscenes data like BEVFormer.
cd ${PROJECT_DIR}/data
ln -s /path/to/nuscenes nuscenes
ln -s /path/to/can_bus can_bus
cd ${PROJECT_DIR}
sh samples/bevformer/create_data.sh
Tree
${PROJECT_DIR}/data/.
├── can_bus
│ ├── scene-0001_meta.json
│ ├── scene-0001_ms_imu.json
│ ├── scene-0001_pose.json
│ └── ...
├── coco
│ ├── annotations
│ ├── test2017
│ ├── train2017
│ └── val2017
└── nuscenes
├── maps
├── samples
├── sweeps
└── v1.0-trainval
Install
With Docker
cd ${PROJECT_DIR}
docker build -t trt85 -f docker/Dockerfile .
docker run -it --gpus all -v ${PROJECT_DIR}:/workspace/BEVFormer_tensorrt/ \
-v /path/to/can_bus:/workspace/BEVFormer_tensorrt/data/can_bus \
-v /path/to/coco:/workspace/BEVFormer_tensorrt/data/coco \
-v /path/to/nuscenes:/workspace/BEVFormer_tensorrt/data/nuscenes \
--shm-size 8G trt85 /bin/bash
# in container
cd /workspace/BEVFormer_tensorrt/TensorRT/build
cmake .. -DCMAKE_TENSORRT_PATH=/usr
make -j$(nproc)
make install
cd /workspace/BEVFormer_tensorrt/third_party/bev_mmdet3d
python setup.py build develop --user
NOTE: You can download the Docker Image HERE.
From Source
CUDA/cuDNN/TensorRT
Download and install the CUDA-11.6/cuDNN-8.6.0/TensorRT-8.5.1.7
following NVIDIA.
PyTorch
Install PyTorch and TorchVision following the official instructions.
pip install torch==1.12.1+cu116 torchvision==0.13.1+cu116 torchaudio==0.12.1+cu116 --extra-index-url https://download.pytorch.org/whl/cu116
MMCV-full
git clone https://github.com/open-mmlab/mmcv.git
cd mmcv
git checkout v1.5.0
pip install -r requirements/optional.txt
MMCV_WITH_OPS=1 pip install -e .
MMDetection
git clone https://github.com/open-mmlab/mmdetection.git
cd mmdetection
git checkout v2.25.1
pip install -v -e .
# "-v" means verbose, or more output
# "-e" means installing a project in editable mode,
# thus any local modifications made to the code will take effect without reinstallation.
MMDeploy
git clone git@github.com:open-mmlab/mmdeploy.git
cd mmdeploy
git checkout v0.10.0
git clone git@github.com:NVIDIA/cub.git third_party/cub
cd third_party/cub
git checkout c3cceac115
# go back to third_party directory and git clone pybind11
cd ..
git clone git@github.com:pybind/pybind11.git pybind11
cd pybind11
git checkout 70a58c5
Build TensorRT Plugins of MMDeploy
Make sure cmake version >= 3.14.0 and gcc version >= 7.
export MMDEPLOY_DIR=/the/root/path/of/MMDeploy
export TENSORRT_DIR=/the/path/of/tensorrt
export CUDNN_DIR=/the/path/of/cuda
export LD_LIBRARY_PATH=$TENSORRT_DIR/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=$CUDNN_DIR/lib64:$LD_LIBRARY_PATH
cd ${MMDEPLOY_DIR}
mkdir -p build
cd build
cmake -DCMAKE_CXX_COMPILER=g++-7 -DMMDEPLOY_TARGET_BACKENDS=trt -DTENSORRT_DIR=${TENSORRT_DIR} -DCUDNN_DIR=${CUDNN_DIR} ..
make -j$(nproc)
make install
Install MMDeploy
cd ${MMDEPLOY_DIR}
pip install -v -e .
# "-v" means verbose, or more output
# "-e" means installing a project in editable mode,
# thus any local modifications made to the code will take effect without reinstallation.
Install this Project
cd ${PROJECT_DIR}
pip install -r requirements.txt
Build and Install Custom TensorRT Plugins
NOTE: CUDA>=11.4, SM version>=7.5
cd ${PROJECT_DIR}/TensorRT/build
cmake .. -DCMAKE_TENSORRT_PATH=/path/to/TensorRT
make -j$(nproc)
make install
Run Unit Test of Custom TensorRT Plugins
cd ${PROJECT_DIR}
sh samples/test_trt_ops.sh
Build and Install Part of Ops in MMDetection3D
cd ${PROJECT_DIR}/third_party/bev_mmdet3d
python setup.py build develop
Prepare the Checkpoints
Download above PyTorch checkpoints to ${PROJECT_DIR}/checkpoints/pytorch/
. The ONNX files and TensorRT engines will be saved in ${PROJECT_DIR}/checkpoints/onnx/
and ${PROJECT_DIR}/checkpoints/tensorrt/
.
Custom TensorRT Plugins
Support Common TensorRT Ops in BEVFormer:
- Grid Sampler
- Multi-scale Deformable Attention
- Modulated Deformable Conv2d
- Rotate
- Inverse
- BEV Pool V2
- Flash Multi-Head Attention
Each operation is implemented as 2 versions: FP32/FP16 (nv_half)/INT8 and FP32/FP16 (nv_half2)/INT8.
For specific speed comparison, see Custom TensorRT Plugins.
Run
The following tutorial uses BEVFormer base
as an example.
- Evaluate with PyTorch
cd ${PROJECT_DIR}
# defult gpu_id is 0
sh samples/bevformer/base/pth_evaluate.sh -d ${gpu_id}
- Evaluate with TensorRT and MMDeploy Plugins
# convert .pth to .onnx
sh samples/bevformer/base/pth2onnx.sh -d ${gpu_id}
# convert .onnx to TensorRT engine (FP32)
sh samples/bevformer/base/onnx2trt.sh -d ${gpu_id}
# convert .onnx to TensorRT engine (FP16)
sh samples/bevformer/base/onnx2trt_fp16.sh -d ${gpu_id}
# evaluate with TensorRT engine (FP32)
sh samples/bevformer/base/trt_evaluate.sh -d ${gpu_id}
# evaluate with TensorRT engine (FP16)
sh samples/bevformer/base/trt_evaluate_fp16.sh -d ${gpu_id}
# Quantization
# calibration and convert .onnx to TensorRT engine (FP32/INT8)
sh samples/bevformer/base/onnx2trt_int8.sh -d ${gpu_id}
# calibration and convert .onnx to TensorRT engine (FP16/INT8)
sh samples/bevformer/base/onnx2trt_int8_fp16.sh -d ${gpu_id}
# evaluate with TensorRT engine (FP32/INT8)
sh samples/bevformer/base/trt_evaluate_int8.sh -d ${gpu_id}
# evaluate with TensorRT engine (FP16/INT8)
sh samples/bevformer/base/trt_evaluate_int8_fp16.sh -d ${gpu_id}
# quantization aware train
# defult gpu_ids is 0,1,2,3,4,5,6,7
sh samples/bevformer/base/quant_aware_train.sh -d ${gpu_ids}
# then following the post training quantization process
- Evaluate with TensorRT and Custom Plugins
# nv_half
# convert .pth to .onnx
sh samples/bevformer/plugin/base/pth2onnx.sh -d ${gpu_id}
# convert .onnx to TensorRT engine (FP32)
sh samples/bevformer/plugin/base/onnx2trt.sh -d ${gpu_id}
# convert .onnx to TensorRT engine (FP16-nv_half)
sh samples/bevformer/plugin/base/onnx2trt_fp16.sh -d ${gpu_id}
# evaluate with TensorRT engine (FP32)
sh samples/bevformer/plugin/base/trt_evaluate.sh -d ${gpu_id}
# evaluate with TensorRT engine (FP16-nv_half)
sh samples/bevformer/plugin/base/trt_evaluate_fp16.sh -d ${gpu_id}
# nv_half2
# convert .pth to .onnx
sh samples/bevformer/plugin/base/pth2onnx_2.sh -d ${gpu_id}
# convert .onnx to TensorRT engine (FP16-nv_half2)
sh samples/bevformer/plugin/base/onnx2trt_fp16_2.sh -d ${gpu_id}
# evaluate with TensorRT engine (FP16-nv_half2)
sh samples/bevformer/plugin/base/trt_evaluate_fp16_2.sh -d ${gpu_id}
# Quantization
# nv_half
# calibration and convert .onnx to TensorRT engine (FP32/INT8)
sh samples/bevformer/plugin/base/onnx2trt_int8.sh -d ${gpu_id}
# calibration and convert .onnx to TensorRT engine (FP16-nv_half/INT8)
sh samples/bevformer/plugin/base/onnx2trt_int8_fp16.sh -d ${gpu_id}
# evaluate with TensorRT engine (FP32/INT8)
sh samples/bevformer/plugin/base/trt_evaluate_int8.sh -d ${gpu_id}
# evaluate with TensorRT engine (FP16-nv_half/INT8)
sh samples/bevformer/plugin/base/trt_evaluate_int8_fp16.sh -d ${gpu_id}
# nv_half2
# calibration and convert .onnx to TensorRT engine (FP16-nv_half2/INT8)
sh samples/bevformer/plugin/base/onnx2trt_int8_fp16_2.sh -d ${gpu_id}
# evaluate with TensorRT engine (FP16-nv_half2/INT8)
sh samples/bevformer/plugin/base/trt_evaluate_int8_fp16_2.sh -d ${gpu_id}
Acknowledgement
This project is mainly based on these excellent open source projects: