Home

Awesome

Prediction-Guided Distillation

PyTorch implementation of our ECCV 2022 paper: Prediction-Guided Distillation for Dense Object Detection

Requirements

Usage

Set up datasets and pre-trained models

mkdir data
ln -s path_to_coco data/coco
ln -s path_to_crowdhuman data/crowdhuman 
ln -s path_to_pretrainedModel data/pretrain_models 

COCO Experiments

# ------------------------------------
#    Here we use ATSS as an example
# ------------------------------------

# Training and testing teacher model
zsh tools/dist_train.sh work_configs/detectors/atss_r101_3x_ms.py 8
zsh tools/dist_test.sh work_configs/detectors/atss_r101_3x_ms.py work_dirs/atss_r101_3x_ms/latest.pth 8

# Training and testing student model 
zsh tools/dist_train.sh work_configs/detectors/atss_r50_1x.py 8
zsh tools/dist_test.sh work_configs/detectors/atss_r50_1x.py work_dirs/atss_r50_1x/latest.pth 8

# Training and testing PGD model
zsh tools/dist_train.sh work_configs/pgd_atss_r101_r50_1x.py 8
zsh tools/dist_test.sh work_configs/pgd_atss_r101_r50_1x.py work_dirs/pgd_atss_r101_r50_1x/latest.pth 8

CrowdHuman Experiments

# Training teacher, conducting KD, and evalauation
zsh tools/run_crowdhuman.sh

Model Zoo

COCO

DetectorSettingmAPConfig
FCOSTeacher (r101, 3x, multi-scale)43.1config
-Student (r50, 1x, single-scale)38.2config
-PGD (r50, 1x, single-scale)42.5 (+4.3)config
AutoAssignTeacher (r101, 3x, multi-scale)44.8config
-Student (r50, 1x, single-scale)40.6config
-PGD (r50, 1x, single-scale)43.8 (+3.1)config
ATSSTeacher (r101, 3x, multi-scale)45.5config
-Student (r50, 1x, single-scale)39.6config
-PGD (r50, 1x, single-scale)44.2 (+4.6)config
GFLTeacher (r101, 3x, multi-scale)45.8config
-Student (r50, 1x, single-scale)40.2config
-PGD (r50, 1x, single-scale)43.8 (+3.6)config
DDODTeacher (r101, 3x, multi-scale)46.6config
-Student (r50, 1x, single-scale)42.0config
-PGD (r50, 1x, single-scale)45.4 (+3.4)config

CrowdHuman

DetectorSettingMR ↓AP ↑JI ↑Config
DDODTeacher (r101, 36 epoch, multi-scale)41.490.281.4config
-Student (r50, 12 epoch, single-scale)46.088.079.0config
-PGD (r50, 12 epoch, single-scale)42.8 (-3.2)90.0 (+2.0)80.7 (+1.7)config

Ciation

@article{yang2022predictionguided,
  title={{Prediction-Guided Distillation for Dense Object Detection}},
  author={Yang, Chenhongyi and Ochal, Mateusz and Storkey, Amos and Crowley, Elliot J},
  journal={ECCV 2022},
  year={2022}
}

Acknowledgement

We thank FGD and DDOD for their code base.