Awesome
Disentangle Your Dense Object Detector
This repo contains the supported code and configuration files to reproduce object detection results of Disentangle Your Dense Object Detector. It is based on mmdetection.
Results and Models
Model | Backbone | Lr Schd | box mAP | AP50 | AP75 | APs | APm | APl |
---|---|---|---|---|---|---|---|---|
ATSS(IoU) | ResNet50 | 1x | 39.4 | 56.6 | 42.6 | 23.9 | 42.5 | 49.6 |
DDOD | ResNet50 | 1x | 41.6 | 59.9 | 45.2 | 23.9 | 44.9 | 54.4 |
DDOD-FCOS | ResNet50 | 1x | 41.6 | 59.9 | 45.3 | 24.0 | 44.6 | 54.8 |
Usage
Installation
Please refer to get_started.md for installation and dataset preparation.
Inference
# multi-gpu testing
tools/dist_test.sh coco_cfg/ddod_r50_1x.py <DET_CHECKPOINT_FILE> 8 --eval bbox
Training
To train a detector with pre-trained models, run:
# multi-gpu training
tools/dist_train.sh coco_cfg/ddod_r50_1x.py 8
Citing DDOD
@misc{chen2021disentangle,
title={Disentangle Your Dense Object Detector},
author={Zehui Chen and Chenhongyi Yang and Qiaofei Li and Feng Zhao and Zhengjun Zha and Feng Wu},
year={2021},
eprint={2107.02963},
archivePrefix={arXiv},
primaryClass={cs.CV}
}