Awesome
YOLO-CROWD
YOLO-CROWD is a lightweight crowd counting and face detection model that is based on Yolov5s and can run on edge devices, as well as fixing the problems of face occlusion, varying face scales, and other challenges of crowd counting
Description
Deep learning-based algorithms for face and crowd identification have advanced significantly. These algorithms can be broadly categorized into two groups: one-stage detectors like YOLO and two-stage detectors like Faster R-CNN. One-stage detectors have been widely employed in many applications due to the better balance between accuracy and speed, but as we are all aware, YOLO algorithms are significantly impacted by occlusion in crowd scenarios. In our project, we propose a real-time crowd counter and face detector called YOLO-CROWD, which has an inference speed of 10.1 ms and contains 461 layers and 18388982 parameters. It is based on the one-stage detector YOLOv5. In order to improve the receptive field of small faces, we use a Receptive Field Enhancement module termed RFE. We then use NWD Loss to compensate for the sensitivity of IoU to the position deviation of small objects. We also employ Repulsion Loss to address face occlusion and utilize an attention module called SEAM.
Demo
Images
Videos
without showing label
https://github.com/zaki1003/YOLO-CROWD/assets/65148928/b0a57b00-ae72-4a5c-ad68-442be1889e0a
with showing label (name + conf)
https://github.com/zaki1003/YOLO-CROWD/assets/65148928/44753430-c5ef-4c15-80c7-e0f328670aac
Comparison Between Yolov5s And YOLO-CROWD
mAp@0.5 | mAp@0.5-0.95 | Precision | Recall | Box loss | Object loss | Inference Time (ms) | |
---|---|---|---|---|---|---|---|
Yolov5s | 39.4 | 0.15 | 0.754 | 0.382 | 0.120 | 0.266 | 7 |
YOLO-CROWD | 43.6 | 0.158 | 0.756 | 0.424 | 0.091 | 0.158 | 10.1 |
Environment Requirments
Create a Python Virtual Environment.
conda create -n {name} python=x.x
Enter Python Virtual Environment.
conda activate {name}
!pip install install torch==1.11 torchvision==0.12 torchtext==0.12 torchaudio==0.11
Install other python package.
pip install -r requirements.txt
Step-Through Example
Installation
Get the code.
git clone https://github.com/zaki1003/YOLO-CROWD.git
Dataset
Download our Dataset crowd-counting-dataset-w3o7w, while exporting the dataset select YOLO v5 PyTorch Format.
Preweight
The link is yolov5s.pt
Training
Train your model on crowd-counting-dataset-w3o7w dataset.
python train.py --img 416
--batch 16
--epochs 200
--data {dataset.location}/data.yaml
--cfg models/yolo-crowd.yaml
--weights yolov5s.pt
--name yolo_crowd_results
--cache
Postweight
The link is yolo-crowd.pt If you want to have more inference speed try to install TensorRt and use this vesion yolo-crowd.engine
Test
python detect.py --weights yolo-crowd.pt --source 0 # webcam
img.jpg # image
vid.mp4 # video
screen # screenshot
path/ # directory
list.txt # list of images
list.streams # list of streams
'path/*.jpg' # glob
'https://youtu.be/Zgi9g1ksQHc' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
Results
Finetune
see in https://github.com/ultralytics/yolov5/issues/607
# Single-GPU
python train.py --epochs 10 --data coco128.yaml --weights yolov5s.pt --cache --evolve
# Multi-GPU
for i in 0 1 2 3 4 5 6 7; do
sleep $(expr 30 \* $i) && # 30-second delay (optional)
echo 'Starting GPU '$i'...' &&
nohup python train.py --epochs 10 --data coco128.yaml --weights yolov5s.pt --cache --device $i --evolve > evolve_gpu_$i.log &
done
# Multi-GPU bash-while (not recommended)
for i in 0 1 2 3 4 5 6 7; do
sleep $(expr 30 \* $i) && # 30-second delay (optional)
echo 'Starting GPU '$i'...' &&
"$(while true; do nohup python train.py... --device $i --evolve 1 > evolve_gpu_$i.log; done)" &
done
Reference
https://github.com/ultralytics/yolov5
https://github.com/deepcam-cn/yolov5-face
https://github.com/open-mmlab/mmdetection
https://github.com/dongdonghy/repulsion_loss_pytorch
Contact
We use code's license is MIT License. The code can be used for business inquiries or professional support requests.