Home

Awesome

ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement (ICCV 2021)

Recently, the power of unconditional image synthesis has significantly advanced through the use of Generative Adversarial Networks (GANs). The task of inverting an image into its corresponding latent code of the trained GAN is of utmost importance as it allows for the manipulation of real images, leveraging the rich semantics learned by the network. Recognizing the limitations of current inversion approaches, in this work we present a novel inversion scheme that extends current encoder-based inversion methods by introducing an iterative refinement mechanism. Instead of directly predicting the latent code of a given image using a single pass, the encoder is tasked with predicting a residual with respect to the current estimate of the inverted latent code in a self-correcting manner. Our residual-based encoder, named ReStyle, attains improved accuracy compared to current state-of-the-art encoder-based methods with a negligible increase in inference time. We analyze the behavior of ReStyle to gain valuable insights into its iterative nature. We then evaluate the performance of our residual encoder and analyze its robustness compared to optimization-based inversion and state-of-the-art encoders.

<a href="https://arxiv.org/abs/2104.02699"><img src="https://img.shields.io/badge/arXiv-2104.02699-b31b1b.svg" height=22.5></a> <a href="https://opensource.org/licenses/MIT"><img src="https://img.shields.io/badge/License-MIT-yellow.svg" height=22.5></a>

<a href="https://www.youtube.com/watch?v=9RzCZZBjlxM"><img src="https://img.shields.io/static/v1?label=Two Minute Papers&message=ReStyle Video&color=red" height=22.5></a>
<a href="https://youtu.be/6pGzLECSIWM"><img src="https://img.shields.io/static/v1?label=ICCV 2021 &message=5 Minute Video&color=red" height=22.5></a>
<a href="https://replicate.ai/yuval-alaluf/restyle_encoder"><img src="https://img.shields.io/static/v1?label=Replicate&message=Demo and Docker Image&color=darkgreen" height=22.5></a>

Inference Notebook: <a href="http://colab.research.google.com/github/yuval-alaluf/restyle-encoder/blob/master/notebooks/inference_playground.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" height=20></a>
Animation Notebook: <a href="http://colab.research.google.com/github/yuval-alaluf/restyle-encoder/blob/master/notebooks/animations_playground.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" height=20></a>

<p align="center"> <img src="docs/teaser.jpg" width="800px"/> <br> Different from conventional encoder-based inversion techniques, our residual-based ReStyle scheme incorporates an iterative refinement mechanism to progressively converge to an accurate inversion of real images. For each domain, we show the input image on the left followed by intermediate inversion outputs. </p>

Description

Official Implementation of our ReStyle paper for both training and evaluation. ReStyle introduces an iterative refinement mechanism which can be applied over different StyleGAN encoders for solving the StyleGAN inversion task.

Table of Contents

Getting Started

Prerequisites

Installation

Pretrained Models

In this repository, we provide pretrained ReStyle encoders applied over the pSp and e4e encoders across various domains.

Please download the pretrained models from the following links.

ReStyle-pSp

PathDescription
FFHQ - ReStyle + pSpReStyle applied over pSp trained on the FFHQ dataset.
Stanford Cars - ReStyle + pSpReStyle applied over pSp trained on the Stanford Cars dataset.
LSUN Church - ReStyle + pSpReStyle applied over pSp trained on the LSUN Church dataset.
AFHQ Wild - ReStyle + pSpReStyle applied over pSp trained on the AFHQ Wild dataset.

ReStyle-e4e

PathDescription
FFHQ - ReStyle + e4eReStyle applied over e4e trained on the FFHQ dataset.
Stanford Cars - ReStyle + e4eReStyle applied over e4e trained on the Stanford Cars dataset.
LSUN Church - ReStyle + e4eReStyle applied over e4e trained on the LSUN Church dataset.
AFHQ Wild - ReStyle + e4eReStyle applied over e4e trained on the AFHQ Wild dataset.
LSUN Horse - ReStyle + e4eReStyle applied over e4e trained on the LSUN Horse dataset.

Auxiliary Models

In addition, we provide various auxiliary models needed for training your own ReStyle models from scratch.
This includes the StyleGAN generators and pre-trained models used for loss computation.

PathDescription
FFHQ StyleGANStyleGAN2 model trained on FFHQ with 1024x1024 output resolution.
LSUN Car StyleGANStyleGAN2 model trained on LSUN Car with 512x384 output resolution.
LSUN Church StyleGANStyleGAN2 model trained on LSUN Church with 256x256 output resolution.
LSUN Horse StyleGANStyleGAN2 model trained on LSUN Horse with 256x256 output resolution.
AFHQ Wild StyleGANStyleGAN-ADA model trained on AFHQ Wild with 512x512 output resolution.
IR-SE50 ModelPretrained IR-SE50 model taken from TreB1eN for use in our ID loss and encoder backbone on human facial domain.
ResNet-34 ModelResNet-34 model trained on ImageNet taken from torchvision for initializing our encoder backbone.
MoCov2 ModelPretrained ResNet-50 model trained using MOCOv2 for computing MoCo-based loss on non-facial domains. The model is taken from the official implementation.
CurricularFace BackbonePretrained CurricularFace model taken from HuangYG123 for use in ID similarity metric computation.
MTCNNWeights for MTCNN model taken from TreB1eN for use in ID similarity metric computation. (Unpack the tar.gz to extract the 3 model weights.)

Note: all StyleGAN models are converted from the official TensorFlow models to PyTorch using the conversion script from rosinality.

By default, we assume that all auxiliary models are downloaded and saved to the directory pretrained_models. However, you may use your own paths by changing the necessary values in configs/path_configs.py.

Training

Preparing your Data

In order to train ReStyle on your own data, you should perform the following steps:

  1. Update configs/paths_config.py with the necessary data paths and model paths for training and inference.
dataset_paths = {
    'train_data': '/path/to/train/data'
    'test_data': '/path/to/test/data',
}
  1. Configure a new dataset under the DATASETS variable defined in configs/data_configs.py. There, you should define the source/target data paths for the train and test sets as well as the transforms to be used for training and inference.
DATASETS = {
	'my_data_encode': {
		'transforms': transforms_config.EncodeTransforms,   # can define a custom transform, if desired
		'train_source_root': dataset_paths['train_data'],
		'train_target_root': dataset_paths['train_data'],
		'test_source_root': dataset_paths['test_data'],
		'test_target_root': dataset_paths['test_data'],
	}
}
  1. To train with your newly defined dataset, simply use the flag --dataset_type my_data_encode.

Preparing your Generator

In this work, we use rosinality's StyleGAN2 implementation. If you wish to use your own generator trained using NVIDIA's implementation there are a few options we recommend:

  1. Using NVIDIA's StyleGAN2 / StyleGAN-ADA TensorFlow implementation.
    You can then convert the TensorFlow .pkl checkpoints to the supported format using the conversion script found in rosinality's implementation.
  2. Using NVIDIA's StyleGAN-ADA PyTorch implementation.
    You can then convert the PyTorch .pkl checkpoints to the supported format using the conversion script created by Justin Pinkney found in dvschultz's fork.

Once you have the converted .pt files, you should be ready to use them in this repository.

Training ReStyle

The main training scripts can be found in scripts/train_restyle_psp.py and scripts/train_restyle_e4e.py. Each of the two scripts will run ReStyle applied over the corresponding base inversion method.
Intermediate training results are saved to opts.exp_dir. This includes checkpoints, train outputs, and test outputs.
Additionally, if you have tensorboard installed, you can visualize tensorboard logs in opts.exp_dir/logs.

We currently support applying ReStyle on the pSp encoder from Richardson et al. [2020] and the e4e encoder from Tov et al. [2021].

Training ReStyle with the settings used in the paper can be done by running the following commands.

python scripts/train_restyle_psp.py \
--dataset_type=ffhq_encode \
--encoder_type=BackboneEncoder \
--exp_dir=experiment/restyle_psp_ffhq_encode \
--workers=8 \
--batch_size=8 \
--test_batch_size=8 \
--test_workers=8 \
--val_interval=5000 \
--save_interval=10000 \
--start_from_latent_avg \
--lpips_lambda=0.8 \
--l2_lambda=1 \
--w_norm_lambda=0 \
--id_lambda=0.1 \
--input_nc=6 \
--n_iters_per_batch=5 \
--output_size=1024 \
--stylegan_weights=pretrained_models/stylegan2-ffhq-config-f.pt
python scripts/train_restyle_e4e.py \
--dataset_type ffhq_encode \
--encoder_type ProgressiveBackboneEncoder \
--exp_dir=experiment/restyle_e4e_ffhq_encode \
--workers=8 \
--batch_size=8 \
--test_batch_size=8 \
--test_workers=8 \
--start_from_latent_avg \
--lpips_lambda=0.8 \
--l2_lambda=1 \
--delta_norm_lambda 0.0002 \
--id_lambda 0.1 \
--use_w_pool \
--w_discriminator_lambda 0.1 \
--progressive_start 20000 \
--progressive_step_every 2000 \
--input_nc 6 \
--n_iters_per_batch=5 \
--output_size 1024 \
--stylegan_weights=pretrained_models/stylegan2-ffhq-config-f.pt

Additional Notes

Inference Notebooks

To help visualize the results of ReStyle we provide a Jupyter notebook found in notebooks/inference_playground.ipynb.
The notebook will download the pretrained models and run inference on the images found in notebooks/images or on images of your choosing. It is recommended to run this in Google Colab.

We have also provided a notebook for generating interpolation videos such as those found in the project page. This notebook can be run using Google Colab here.

Testing

Inference

You can use scripts/inference_iterative.py to apply a trained model on a set of images:

python scripts/inference_iterative.py \
--exp_dir=/path/to/experiment \
--checkpoint_path=experiment/checkpoints/best_model.pt \
--data_path=/path/to/test_data \
--test_batch_size=4 \
--test_workers=4 \
--n_iters_per_batch=5

This script will save each step's outputs in a separate sub-directory (e.g., the outputs of step i will be saved in /path/to/experiment/inference_results/i).

Notes:

{
    "0.jpg": [latent_step_1, latent_step_2, ..., latent_step_N],
    "1.jpg": [latent_step_1, latent_step_2, ..., latent_step_N],
    ...
}

That is, the keys of the dictionary are the image file names and the values are lists of length N containing the output latent of each step where N is the number of inference steps. Each element in the list is of shape (Kx512) where K is the number of style inputs of the generator.

You can use the saved latents to perform latent space manipulations, for example.

Step-by-Step Inference

<p align="center"> <img src="docs/2441.jpg" width="800px"/> <img src="docs/02530.jpg" width="800px"/> <br> Visualizing the intermediate outputs. Here, the intermediate outputs are saved from left to right with the input image shown on the right-hand side. </p>

Sometimes, you may wish to save each step's outputs side-by-side instead of in separate sub-folders. This would allow one to easily see the progression in the reconstruction with each step. To save the step-by-step outputs as a single image, you can run the following:

python scripts/inference_iterative_save_coupled.py \
--exp_dir=/path/to/experiment \
--checkpoint_path=experiment/checkpoints/best_model.pt \
--data_path=/path/to/test_data \
--test_batch_size=4 \
--test_workers=4 \
--n_iters_per_batch=5

Computing Metrics

Given a trained model and generated outputs, we can compute the loss metrics on a given dataset.
These scripts receive the inference output directory and ground truth directory.

python scripts/calc_losses_on_images.py \
--mode lpips \
--output_path=/path/to/experiment/inference_results \
--gt_path=/path/to/test_images
python scripts/calc_losses_on_images.py \
--mode l2 \
--output_path=/path/to/experiment/inference_results \
--gt_path=/path/to/test_images
python scripts/calc_id_loss_parallel.py \
--output_path=/path/to/experiment/inference_results \
--gt_path=/path/to/test_images

These scripts will traverse through each sub-directory of output_path to compute the metrics on each step's output images.

Editing

<p align="center"> <img src="docs/ardern.jpg" width="800px"/> <img src="docs/macron.jpg" width="800px"/> <img src="docs/merkel.jpg" width="800px"/> <br> Editing results using InterFaceGAN on inversions obtained using ReStyle-e4e. </p> For performing edits using ReStyle-e4e, you can run the script found in `editing/inference_editing.py`, as follows:
python editing/inference_editing.py \
--exp_dir=/path/to/experiment \
--checkpoint_path=/path/to/e4e_ffhq_encoder.pt \
--data_path=/path/to/test_data \
--test_batch_size=4 \
--test_workers=4 \
--n_iters_per_batch=5 \
--edit_directions=age,pose,smile \
--factor_ranges=5,5,5

This script will perform the inversion immediately followed by the latent space edit.
The results for each edit will be saved to different sub-directories in the specified experiment directory. For each image, we save the original image followed by the inversion and the resulting edits.
We support running inference using ReStyle-e4e models on the faces domain using edit several directions obtained via InterFaceGAN (age, pose, and smile).

Encoder Bootstrapping

<p align="center"> <img src="docs/346.jpg" width="800px"/> <img src="docs/2598.jpg" width="800px"/> <br> Image toonification results using our proposed encoder bootstrapping technique. </p>

In the paper, we introduce an encoder bootstrapping technique that can be used to solve the image toonification task by pairing an FFHQ-based encoder with a Toon-based encoder.
Below we provide the models used to generate the results in the paper:

PathDescription
FFHQ - ReStyle + pSpSame FFHQ encoder as linked above.
Toonify - ReStyle + pSpReStyle applied over pSp trained for the image toonification task.
Toonify GeneratorToonify generator from Doron Adler and Justin Pinkney converted to Pytorch using rosinality's conversion script.

Note that the ReStyle toonify model is trained using only real images with no paired data. More details regarding the training parameters and settings of the toonify encoder can be found here.

If you wish to run inference using these two models and the bootstrapping technique you may run the following:

python scripts/encoder_bootstrapping_inference.py \
--exp_dir=/path/to/experiment \
--model_1_checkpoint_path=/path/to/restyle_psp_ffhq_encode.pt \
--model_2_checkpoint_path=/path/to/restyle_psp_toonify.pt \
--data_path=/path/to/test_data \
--test_batch_size=4 \
--test_workers=4 \
--n_iters_per_batch=1  # one step for each encoder is typically good

Here, we output the per-step outputs side-by-side with the inverted initialization real-image on the left and the original input image on the right.

Repository structure

PathDescription <img width=200>
restyle-encoderRepository root folder
├  configsFolder containing configs defining model/data paths and data transforms
├  criteriaFolder containing various loss criterias for training
├  datasetsFolder with various dataset objects
├  docsFolder containing images displayed in the README
├  environmentFolder containing Anaconda environment used in our experiments
├  licensesFolder containing licenses of the open source projects used in this repository
├ modelsFolder containing all the models and training objects
│  ├  e4e_modulesFolder containing the latent discriminator implementation from encoder4editing
│  ├  encodersFolder containing various architecture implementations including our simplified encoder architectures
│  ├  mtcnnMTCNN implementation from TreB1eN
│  ├  stylegan2StyleGAN2 model from rosinality
│  ├  psp.pyImplementation of pSp encoder extended to work with ReStyle
│  └  e4e.pyImplementation of e4e encoder extended to work with ReStyle
├  notebooksFolder with jupyter notebook containing ReStyle inference playground
├  optionsFolder with training and test command-line options
├  scriptsFolder with running scripts for training, inference, and metric computations
├  trainingFolder with main training logic and Ranger implementation from lessw2020
├  utilsFolder with various utility functions
<img width=300><img>

Credits

StyleGAN2 model and implementation:
https://github.com/rosinality/stylegan2-pytorch
Copyright (c) 2019 Kim Seonghyeon
License (MIT) https://github.com/rosinality/stylegan2-pytorch/blob/master/LICENSE

IR-SE50 model and implementations:
https://github.com/TreB1eN/InsightFace_Pytorch
Copyright (c) 2018 TreB1eN
License (MIT) https://github.com/TreB1eN/InsightFace_Pytorch/blob/master/LICENSE

Ranger optimizer implementation:
https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer
License (Apache License 2.0) https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer/blob/master/LICENSE

LPIPS model and implementation:
https://github.com/S-aiueo32/lpips-pytorch
Copyright (c) 2020, Sou Uchida
License (BSD 2-Clause) https://github.com/S-aiueo32/lpips-pytorch/blob/master/LICENSE

pSp model and implementation:
https://github.com/eladrich/pixel2style2pixel
Copyright (c) 2020 Elad Richardson, Yuval Alaluf
License (MIT) https://github.com/eladrich/pixel2style2pixel/blob/master/LICENSE

e4e model and implementation:
https://github.com/omertov/encoder4editing Copyright (c) 2021 omertov
License (MIT) https://github.com/omertov/encoder4editing/blob/main/LICENSE

Please Note: The CUDA files under the StyleGAN2 ops directory are made available under the Nvidia Source Code License-NC

Acknowledgments

This code borrows heavily from pixel2style2pixel and encoder4editing.

Citation

If you use this code for your research, please cite the following works:

@InProceedings{alaluf2021restyle,
      author = {Alaluf, Yuval and Patashnik, Or and Cohen-Or, Daniel},
      title = {ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement}, 
      month = {October},
      booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},  
      year = {2021}
}
@InProceedings{richardson2021encoding,
      author = {Richardson, Elad and Alaluf, Yuval and Patashnik, Or and Nitzan, Yotam and Azar, Yaniv and Shapiro, Stav and Cohen-Or, Daniel},
      title = {Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation},
      booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
      month = {June},
      year = {2021}
}
@article{tov2021designing,
      title={Designing an Encoder for StyleGAN Image Manipulation},
      author={Tov, Omer and Alaluf, Yuval and Nitzan, Yotam and Patashnik, Or and Cohen-Or, Daniel},
      journal={arXiv preprint arXiv:2102.02766},
      year={2021}
}