Home

Awesome

InsightFace_Pytorch

Pytorch0.4.1 codes for InsightFace


1. Intro


2. Pretrained Models & Performance

IR-SE50 @ BaiduNetdisk, IR-SE50 @ Onedrive

LFW(%)CFP-FF(%)CFP-FP(%)AgeDB-30(%)calfw(%)cplfw(%)vgg2_fp(%)
0.99520.99620.95040.96220.95570.91070.9386

Mobilefacenet @ BaiduNetDisk, Mobilefacenet @ OneDrive

LFW(%)CFP-FF(%)CFP-FP(%)AgeDB-30(%)calfw(%)cplfw(%)vgg2_fp(%)
0.99180.98910.89860.93470.94020.8660.9100

3. How to use

3.1 Data Preparation

3.1.1 Prepare Facebank (For testing over camera or video)

Provide the face images your want to detect in the data/face_bank folder, and guarantee it have a structure like following:

data/facebank/
        ---> id1/
            ---> id1_1.jpg
        ---> id2/
            ---> id2_1.jpg
        ---> id3/
            ---> id3_1.jpg
           ---> id3_2.jpg

3.1.2 download the pretrained model to work_space/model

If more than 1 image appears in one folder, an average embedding will be calculated

3.2.3 Prepare Dataset ( For training)

download the refined dataset: (emore recommended)

Note: If you use the refined MS1M dataset and the cropped VGG2 dataset, please cite the original papers.

faces_emore/
            ---> agedb_30
            ---> calfw
            ---> cfp_ff
            --->  cfp_fp
            ---> cfp_fp
            ---> cplfw
            --->imgs
            ---> lfw
            ---> vgg2_fp

3.2 detect over camera:

- facebank/
         name1/
             photo1.jpg
             photo2.jpg
             ...
         name2/
             photo1.jpg
             photo2.jpg
             ...
         .....
    if more than 1 image appears in the directory, average embedding will be calculated

3.3 detect over video:

​```
python infer_on_video.py -f [video file name] -s [save file name]
​```

the video file should be inside the data/face_bank folder

3.4 Training:

​```
python train.py -b [batch_size] -lr [learning rate] -e [epochs]

# python train.py -net mobilefacenet -b 200 -w 4
​```

4. References

PS