Awesome
Limited-view PAT-Diffusion
Guo, K., Zheng, Z., Zhong, W., Li, Z., Wang, G., Li, J., ... & Song, X. (2024). Score-based generative model-assisted information compensation for high-quality limited-view reconstruction in photoacoustic tomography. Photoacoustics, 100623.
Forward and reverse processes of diffusion model.
<div align="center"><img src="https://github.com/yqx7150/Limited-view-PAT-Diffusion/blob/main/Figure1.png"> </div>Reconstruction flowchart of limited-view PAT.
<div align="center"><img src="https://github.com/yqx7150/Limited-view-PAT-Diffusion/blob/main/Figure2.png"> </div>The reconstruction process of the circular phantom in limited-view case of 70°.
<div align="center"><img src="https://github.com/yqx7150/Limited-view-PAT-Diffusion/blob/main/Figure3.png"> </div>Other Related Projects
-
Accelerated model-based iterative reconstruction strategy for sparse-view photoacoustic tomography aided by multi-channel autoencoder priors
<font size=5>[Paper]</font> <font size=5>[Code]</font> -
Sparse-view reconstruction for photoacoustic tomography combining diffusion model with model-based iteration
<font size=5>[Paper]</font> <font size=5>[Code]</font> -
Ultra-sparse reconstruction for photoacoustic tomography: sinogram domain prior-guided method exploiting enhanced score-based diffusion model
<font size=5>[Paper]</font> <font size=5>[Code]</font> -
Multiple diffusion models-enhanced extremely limited-view reconstruction strategy for photoacoustic tomography boosted by multi-scale priors
<font size=5>[Paper]</font> <font size=5>[Code]</font> -
Unsupervised disentanglement strategy for mitigating artifact in photoacoustic tomography under extremely sparse view
<font size=5>[Paper]</font> <font size=5>[Code]</font> -
Mean-reverting diffusion model-enhanced acoustic-resolution photoacoustic microscopy for resolution enhancement: Toward optical resolution
<font size=5>[Paper]</font> <font size=5>[Code]</font> -
Generative model for sparse photoacoustic tomography artifact removal
<font size=5>[Paper]</font> -
PAT-public-data from NCU <font size=5>[Code]</font>