Awesome
Ultra-sparse reconstruction for photoacoustic tomography: sinogram domain prior-guided method exploiting enhanced score-based diffusion model
Zilong Li, Jiabin Lin, Yiguang Wang, Jiahong Li, Yubin Cao, Xuan Liu, Wenbo Wan, Qiegen Liu and Xianlin Song, Photoacoustics, (2024)
doi:https://doi.org/10.1016/j.pacs.2024.100670
The forward diffusion and reverse diffusion processes
The pipeline for the trainning and iterative reconstruction processes
Reconstruction of simulated blood vessels in the sparse data of 32,64,128 detectors
Other Related Projects
-
Accelerated model-based iterative reconstruction strategy for sparse-view photoacoustic tomography aided by multi-channel autoencoder priors
<font size=5>[Paper]</font> <font size=5>[Code]</font> -
Sparse-view reconstruction for photoacoustic tomography combining diffusion model with model-based iteration
<font size=5>[Paper]</font> <font size=5>[Code]</font> -
Score-based generative model-assisted information compensation for high-quality limited-view reconstruction in photoacoustic tomography
<font size=5>[Paper]</font> <font size=5>[Code]</font> -
Ultra-sparse reconstruction for photoacoustic tomography: sinogram domain prior-guided method exploiting enhanced score-based diffusion model
<font size=5>[Paper]</font> <font size=5>[Code]</font> -
Multiple diffusion models-enhanced extremely limited-view reconstruction strategy for photoacoustic tomography boosted by multi-scale priors
<font size=5>[Paper]</font> <font size=5>[Code]</font> -
Mean-reverting diffusion model-enhanced acoustic-resolution photoacoustic microscopy for resolution enhancement: Toward optical resolution
<font size=5>[Paper]</font> <font size=5>[Code]</font> -
Unsupervised disentanglement strategy for mitigating artifact in photoacoustic tomography under extremely sparse view
<font size=5>[Paper]</font> <font size=5>[Code]</font> -
Generative model for sparse photoacoustic tomography artifact removal
<font size=5>[Paper]</font> -
PAT-public-data from NCU <font size=5>[Code]</font>