Home

Awesome

nlp_xiaojiang

AugmentText

- 回译(效果比较好)
- EDA(同义词替换、插入、交换和删除)(效果还行)
- HMM-marko(质量较差)
- syntax(依存句法、句法、语法书)(简单句还可)
- seq2seq(深度学习同义句生成,效果不理想,seq2seq代码大都是 [https://github.com/qhduan/just_another_seq2seq] 的,效果不理想)
- 预训练(UNILM生成、开源模型回译)

ChatBot

- 检索式ChatBot
    - 像ES那样直接检索(如使用fuzzywuzzy),只能字面匹配
    - 构造句向量,检索问答库,能够检索有同义词的句子
- 生成式ChatBot(todo)
    - seq2seq
    - GAN

ClassificationText

- bert+bi-lstm(keras) approach 0.78~0.79% acc of weBank Intelligent Customer Service Question Matching Competition
- bert + text-cnn(keras) approach 0.78~0.79% acc of weBank Intelligent Customer Service Question Matching Competition
- bert + r-cnn(keras) approach 0.78~0.79% acc of weBank Intelligent Customer Service Question Matching Competition
- bert + avt-cnn(keras) approach 0.78~0.79% acc of weBank Intelligent Customer Service Question Matching Competition

Ner

- bert命名实体提取(bert12层embedding + bilstm + crf)
    - args.py(配置一些参数)
    - keras_bert_embedding.py(bert embedding)
    - keras_bert_layer.py(layer层, 主要有CRF和NonMaskingLayer)
    - keras_bert_ner_bi_lstm.py(主函数, 定义模型、数据预处理和训练预测等)
    - layer_crf_bojone.py(CRF层, 未使用)

FeatureProject

- bert句向量、文本相似度
    - bert/extract_keras_bert_feature.py:提取bert句向量特征
    - bert/tet_bert_keras_sim.py:测试xlnet句向量cosin相似度
- xlnet句向量、文本相似度
    - xlnet/extract_keras_xlnet_feature.py:提取bert句向量特征
    - xlnet/tet_xlnet_keras_sim.py:测试bert句向量cosin相似度
- normalization_util指的是数据归一化
    - 0-1归一化处理
    - 均值归一化
    - sig归一化处理
- sim feature(ML)
    - distance_text_or_vec:各种计算文本、向量距离等
    - distance_vec_TS_SS:TS_SS计算词向量距离
    - cut_td_idf:将小黄鸡语料和gossip结合
    - sentence_sim_feature:计算两个文本的相似度或者距离,例如qq(问题和问题),或者qa(问题和答案)

run(可以在win10下,pycharm下运行)

Data

- chinese_L-12_H-768_A-12(谷歌预训练好的模型)
   github项目中只是上传部分数据,需要的前往链接: https://pan.baidu.com/s/1I3vydhmFEQ9nuPG2fDou8Q 提取码: rket
   解压后就可以啦
- chinese_xlnet_mid_L-24_H-768_A-12(哈工大训练的中文xlnet, mid, 24层, wiki语料+通用语料)
    - 下载地址[https://github.com/ymcui/Chinese-PreTrained-XLNet](https://github.com/ymcui/Chinese-PreTrained-XLNet)
- chinese_vector
    github项目中只是上传部分数据,需要的前往链接: https://pan.baidu.com/s/1I3vydhmFEQ9nuPG2fDou8Q 提取码: rket
    - 截取的部分word2vec训练词向量(自己需要下载全效果才会好)
    - w2v_model_wiki_char.vec、w2v_model_wiki_word.vec都只有部分,词向量w2v_model_wiki_word.vec可以用这个下载地址的替换[https://pan.baidu.com/s/14JP1gD7hcmsWdSpTvA3vKA](https://pan.baidu.com/s/14JP1gD7hcmsWdSpTvA3vKA)

- corpus
    github项目中只是上传部分数据,需要的前往链接: https://pan.baidu.com/s/1I3vydhmFEQ9nuPG2fDou8Q 提取码: rket
    - ner(train、dev、test----人民日报语料)
    - webank(train、dev、test)
    - 小黄鸡和gossip问答预料(数据没清洗),chicken_and_gossip.txt
    - 微众银行和支付宝文本相似度竞赛数据, sim_webank.csv
- sentence_vec_encode_char
    - 1.txt(字向量生成的前100000句向量)
- sentence_vec_encode_word
    - 1.txt(词向量生成的前100000句向量)
- tf_idf(chicken_and_gossip.txt生成的tf-idf)

requestments.txt

- python_Levenshtei
    - 调用Levenshtein,我的python是3.6,
    - 打开其源文件: https://www.lfd.uci.edu/~gohlke/pythonlibs/
    - 查找python_Levenshtein-0.12.0-cp36-cp36m-win_amd64.whl下载即可
- pyemd
- pyhanlp
    - 下好依赖JPype1-0.6.3-cp36-cp36m-win_amd64.whl

参考/感谢

其他资料