Awesome
<div align=center>Predicting the Original Appearance of Damaged Historical Documents
</div> <div align=center> </div> <p align="center"> <strong><a href="#🖼️-Gallery">🖼️ Gallery </a></strong> • <strong><a href="#📊-HDR28K">📊 HDR28K </a></strong> • <strong><a href="#🔥-Model-Zoo">🔥 Model Zoo</a></strong> • <strong><a href="#🚧-Installation">🚧 Installation</a></strong> • <strong><a href="#📺-Inference">📺 Inference</a></strong> • <strong><a href="#📏-Evaluation">📏 Evaluation</a></strong> </p>🌟 Highlight
- We introduce a <u>H</u>istorical <u>D</u>ocument <u>R</u>epair (HDR) task, which endeavors to predict the original appearance of damaged historical document images.
- We build a large-scale historical document repair dataset, termed HDR28K, which includes <u>28,552</u> damaged-repaired image pairs with character-level annotations and multi-style degradation.
- 🔥🔥🔥 We propose a <u>Diff</u>usion-based <u>H</u>istorical <u>D</u>ocument <u>R</u>epair method (DiffHDR), which augments the DDPM framework with semantic and spatial information
📰 News
- 2024.12.17: Release inference code.
- 2024.12.10: 🎉🎉 Our paper is accepted by AAAI2025.
🏗️ TODO List
- Inference Code.
- HDR28K Dataset Release.
- Repair Demo.
- Traning Code. (Maybe release, due to the copyright)
🔥 Model Zoo
Model | chekcpoint | status |
---|---|---|
DiffHDR | GoogleDrive / BaiduYun:x62f | Released |
🚧 Installation
Prerequisites (Recommended)
- Linux
- Python 3.9
- Pytorch 1.13.1
- CUDA 11.7
Environment Setup
Clone this repo:
git clone https://github.com/yeungchenwa/HDR.git
Step 0: Download and install Miniconda from the official website.
Step 1: Create a conda environment and activate it.
conda create -n diffhdr python=3.9 -y
conda activate diffhdr
Step 2: Install related version Pytorch following here.
# Suggested
pip install torch==1.13.1+cu117 torchvision==0.14.1+cu117 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu117
Step 3: Install the required packages.
pip install -r requirements.txt
📺 Inference
Using DiffHDR for damaged historical documents repair (Some examples including damaged images, mask images, and content images are provided in /examples
):
sh scripts/inference.sh
device
: CUDA or CPU used for inference,image_path
: The damaged image path.mask_image_path
: The masked image path.content_image_path
: The content image path.save_dir
: The directory for saving repaired image.content_mask_guidance_scale
: The guidance scale of content image and masked image.degraded_guidance_scale
: The guidance scale of damaged image.ckpt_path
: The unet checkpoint path.num_inference_steps
: The number of inference steps.
📊 HDR28K
Coming soon ...
📏 Evaluation
Coming soon ...
💙 Acknowledgement
⛔️ Copyright
- This repository can only be used for non-commercial research purposes.
- For commercial use, please contact Prof. Lianwen Jin (eelwjin@scut.edu.cn).
- Copyright 2024, Deep Learning and Vision Computing Lab (DLVC-Lab), South China University of Technology.
📇 Citation
@inproceedings{yang2024fontdiffuser,
title={Predicting the Original Appearance of Damaged Historical Documents},
author={Yang, Zhenhua and Peng, Dezhi and Shi, Yongxin and Zhang, Yuyi and Liu, Chongyu and Jin, Lianwen},
booktitle={Proceedings of the AAAI conference on artificial intelligence},
year={2025}
}