Home

Awesome

<div align=center>

Predicting the Original Appearance of Damaged Historical Documents

</div>

HDR_LOGO

<div align=center>

arXiv preprint Homepage Code

</div> <p align="center"> <strong><a href="#🖼️-Gallery">🖼️ Gallery </a></strong> • <strong><a href="#📊-HDR28K">📊 HDR28K </a></strong> • <strong><a href="#🔥-Model-Zoo">🔥 Model Zoo</a></strong> • <strong><a href="#🚧-Installation">🚧 Installation</a></strong> • <strong><a href="#📺-Inference">📺 Inference</a></strong> • <strong><a href="#📏-Evaluation">📏 Evaluation</a></strong> </p>

🌟 Highlight

Vis_1 Vis_2

📰 News

🏗️ TODO List

🔥 Model Zoo

Modelchekcpointstatus
DiffHDRGoogleDrive / BaiduYun:x62fReleased

🚧 Installation

Prerequisites (Recommended)

Environment Setup

Clone this repo:

git clone https://github.com/yeungchenwa/HDR.git

Step 0: Download and install Miniconda from the official website.

Step 1: Create a conda environment and activate it.

conda create -n diffhdr python=3.9 -y
conda activate diffhdr

Step 2: Install related version Pytorch following here.

# Suggested
pip install torch==1.13.1+cu117 torchvision==0.14.1+cu117 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu117

Step 3: Install the required packages.

pip install -r requirements.txt

📺 Inference

Using DiffHDR for damaged historical documents repair (Some examples including damaged images, mask images, and content images are provided in /examples):

sh scripts/inference.sh

📊 HDR28K

HDR28K

Coming soon ...

📏 Evaluation

Coming soon ...

💙 Acknowledgement

⛔️ Copyright

📇 Citation

@inproceedings{yang2024fontdiffuser,
  title={Predicting the Original Appearance of Damaged Historical Documents},
  author={Yang, Zhenhua and Peng, Dezhi and Shi, Yongxin and Zhang, Yuyi and Liu, Chongyu and Jin, Lianwen},
  booktitle={Proceedings of the AAAI conference on artificial intelligence},
  year={2025}
}

🌟 Star Rising

Star Rising