Awesome
Rethinking Self-Supervised Correspondence Learning: A Video Frame-level Similarity Perspective
This repository is the official implementation for VFS introduced in the paper:
Rethinking Self-Supervised Correspondence Learning: A Video Frame-level Similarity Perspective <br> Jiarui Xu, Xiaolong Wang <br> ICCV 2021 (Oral)
The project page with video is at https://jerryxu.net/VFS/.
<div align="center"> <img src="figs/vfs.gif" width="75%"> </div>Citation
If you find our work useful in your research, please cite:
@article{xu2021rethinking,
title={Rethinking Self-Supervised Correspondence Learning: A Video Frame-level Similarity Perspective},
author={Xu, Jiarui and Wang, Xiaolong},
journal={arXiv preprint arXiv:2103.17263},
year={2021}
}
Environmental Setup
- Python 3.7
- PyTorch 1.6-1.8
- mmaction2
- davis2017-evaluation
- got10k
The codebase is implemented based on the awesome MMAction2, please follow the install instruction of MMAction2 to setup the environment.
Quick start full script:
conda create -n vfs python=3.7 -y
conda activate vfs
conda install pytorch==1.8.0 torchvision==0.9.0 cudatoolkit=11.1 -c pytorch -c conda-forge
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.8.0/index.html
# install customized evaluation API for DAVIS
pip install git+https://github.com/xvjiarui/davis2017-evaluation
# install evaluation API for OTB
pip install got10k
# install VFS
git clone https://github.com/xvjiarui/VFS/
cd VFS
pip install -e .
We also provide the Dockerfile under docker/
folder.
The code is developed and tested based on PyTorch 1.6-1.8. It also runs smoothly with PyTorch 1.9 but the accuracy is slightly worse for OTB evaluation. Please feel free to open a PR if you find the reason.
Model Zoo
Fine-grained correspondence
<p float="left"> <img src="figs/paragliding.gif" width="49%"> <img src="figs/soapbox.gif" width="49%"> </p>Backbone | Config | J&F-Mean | J-Mean | F-Mean | Download | Inference cmd |
---|---|---|---|---|---|---|
ResNet-18 | cfg | 66.7 | 64.0 | 69.5 | pretrain ckpt | <details><summary>cmd</summary>./tools/dist_test.sh configs/r18_nc_sgd_cos_100e_r2_1xNx8_k400.py https://github.com/xvjiarui/VFS/releases/download/v0.1-rc1/r18_nc_sgd_cos_100e_r2_1xNx8_k400-db1a4c0d.pth 1 --eval davis --options test_cfg.save_np=True </details> |
ResNet-50 | cfg | 69.5 | 67.0 | 72.0 | pretrain ckpt | <details><summary>cmd</summary>./tools/dist_test.sh configs/r50_nc_sgd_cos_100e_r5_1xNx2_k400.py https://github.com/xvjiarui/VFS/releases/download/v0.1-rc1/r50_nc_sgd_cos_100e_r5_1xNx2_k400-d7ce3ad0.pth 1 --eval davis --options test_cfg.save_np=True </details> |
Note: We report the accuracy of the last block in res4, to evaluate all blocks, please pass --options test_cfg.all_blocks=True
.
The reproduced performance in this repo is slightly higher than reported in the paper.
Object-level correspondence
<p float="left"> <img src="figs/mountainbike.gif" width="33%"> <img src="figs/deer.gif" width="33%"> <img src="figs/jogging.gif" width="33%"> </p>Backbone | Config | Precision | Success | Download | Inference cmd |
---|---|---|---|---|---|
ResNet-18 | cfg | 70.0 | 52.3 | tracking ckpt | <details><summary>cmd</summary>python projects/siamfc-pytorch/train_siamfc.py configs/r18_sgd_cos_100e_r2_1xNx8_k400.py --checkpoint https://github.com/xvjiarui/VFS/releases/download/v0.1-rc1/r18_sgd_cos_100e_r2_1xNx8_k400-e3b6a4bc.pth </details> |
ResNet-50 | cfg | 73.9 | 52.5 | tracking ckpt | <details><summary>cmd</summary>python projects/siamfc-pytorch/train_siamfc.py configs/r50_sgd_cos_100e_r5_1xNx2_k400.py --checkpoint https://github.com/xvjiarui/VFS/releases/download/v0.1-rc1/r50_sgd_cos_100e_r2_1xNx2_k400-b7fb2a38.pth --options out_scale=0.00001 out_channels=2048 </details> |
Note: We fine-tune an extra linear layer. The reproduced performance in this repo is slightly higher than reported in the paper.
Data Preparation
We use Kinetics-400 for self-supervised correspondence pretraining.
The fine-grained correspondence is evaluated on DAVIS2017 w/o any fine-tuning.
The object-level correspondence is evaluated on OTB-100 under linear probing setting (fine-tuning an extra linear layer).
The overall file structure is as followed:
vfs
├── mmaction
├── tools
├── configs
├── data
│ ├── kinetics400
│ │ ├── videos_train
│ │ │ ├── kinetics400_train_list_videos.txt
│ │ │ ├── train
│ │ │ │ ├── abseiling/
│ │ │ │ ├── air_drumming/
│ │ │ │ ├── ...
│ │ │ │ ├── yoga/
│ │ │ │ ├── zumba/
│ ├── davis
│ │ ├── DAVIS
│ │ │ ├── Annotations
│ │ │ │ ├── 480p
│ │ │ │ │ ├── bike-packing/
│ │ │ │ │ ├── ...
│ │ │ │ │ ├── soapbox/
│ │ │ ├── ImageSets
│ │ │ │ ├── 2017/
│ │ │ │ ├── davis2017_val_list_rawframes.txt
│ │ │ ├── JPEGImages
│ │ │ │ ├── 480p
│ │ │ │ │ ├── bike-packing/
│ │ │ │ │ ├── ...
│ │ │ │ │ ├── soapbox/
│ ├── otb
│ │ ├── Basketball/
│ │ ├── ...
│ │ ├── Woman/
│ ├── GOT-10k
│ │ ├── train
│ │ │ ├── GOT-10k_Train_000001/
│ │ │ ├── ...
│ │ │ ├── GOT-10k_Train_009335/
The instructions for preparing each dataset are as followed.
Kinetics-400
Please follow the documentation here to prepare the Kinetics-400. The dataset could be downloaded from kinetics-dataset.
DAVIS2017
DAVIS2017 dataset could be downloaded from the official website. We use the 480p validation set for evaluation.
# download data
wget https://data.vision.ee.ethz.ch/csergi/share/davis/DAVIS-2017-trainval-480p.zip
# download filelist
wget https://github.com/xvjiarui/VFS/releases/download/v0.1-rc1/davis2017_val_list_rawframes.txt
Then please unzip and place them according to the file structure above.
OTB-100
The OTB-100 frames and annotations will be downloaded automatically.
GOT-10k
GOT-10k dataset could be downloaded from the official website.
Then please unzip and place them according to the file structure above.
Run Experiments
Pretrain
./tools/dist_train.sh ${CONFIG} ${GPUS}
We use 2 and 8 GPUs for ResNet-18 and ResNet-50 models respectively.
Inference
To run the following inference and evaluation, we need to convert the pretrained checkpoint into the same format as torchvision ResNet.
python tools/convert_weights/convert_to_pretrained.py ${PRETRAIN_CHECKPOINT} ${BACKBONE_WEIGHT}
Evaluate fine-grained correspondence on DAVIS2017
./tools/dist_test.sh ${CONFIG} ${BACKBONE_WEIGHT} ${GPUS} --eval davis
You may pass --options test_cfg.save_np=True
to save memory.
Inference cmd examples:
# testing r18 model
./tools/dist_test.sh configs/r18_nc_sgd_cos_100e_r2_1xNx8_k400.py https://github.com/xvjiarui/VFS/releases/download/v0.1-rc1/r18_nc_sgd_cos_100e_r2_1xNx8_k400-db1a4c0d.pth 1 --eval davis --options test_cfg.save_np=True
# testing r50 model
./tools/dist_test.sh configs/r50_nc_sgd_cos_100e_r5_1xNx2_k400.py https://github.com/xvjiarui/VFS/releases/download/v0.1-rc1/r50_nc_sgd_cos_100e_r5_1xNx2_k400-d7ce3ad0.pth 1 --eval davis --options test_cfg.save_np=True
Evaluate object-level correspondence
ResNet-18:
python projects/siamfc-pytorch/train_siamfc.py ${CONFIG} --pretrained ${BACKBONE_WEIGHT}
ResNet-50:
python projects/siamfc-pytorch/train_siamfc.py ${CONFIG} --pretrained ${BACKBONE_WEIGHT} --options out_scale=0.00001 out_channels=2048
The results will be saved in work_dirs/${CONFIG}/siamfc
.
To inference with provided tracking checkpoints:
python projects/siamfc-pytorch/train_siamfc.py ${CONFIG} --checkpoint ${TRACKING_CHECKPOINT}
Inference cmd examples:
# testing r18 model
python projects/siamfc-pytorch/train_siamfc.py configs/r18_sgd_cos_100e_r2_1xNx8_k400.py --checkpoint https://github.com/xvjiarui/VFS/releases/download/v0.1-rc1/r18_sgd_cos_100e_r2_1xNx8_k400-e3b6a4bc.pth
# testing r50 model
python projects/siamfc-pytorch/train_siamfc.py configs/r50_sgd_cos_100e_r5_1xNx2_k400.py --checkpoint https://github.com/xvjiarui/VFS/releases/download/v0.1-rc1/r50_sgd_cos_100e_r5_1xNx2_k400-b7fb2a38.pth --options out_scale=0.00001 out_channels=2048
Acknowledgements
The codebase is based on MMAction2. The fine-grained correspondence inference and evaluation follows TimeCycle, UVC and videowalk. The object-level correspondence inference and evaluation is based on SiamFC-PyTorch and vince.
Thank you all for the great open source repositories!