Home

Awesome

CHIP-8 Interpreter, Assembler and Disassembler

This package contains an interpreter for CHIP-8 as well as a command-line assembler and disassembler.

It also supports the SuperChip instructions.

The syntax of the assembler and disassembler is based on the syntax described in Cowgod's Chip-8 Technical Reference v1.0, by Thomas P. Greene

Frédéric Devernay's SVision-8 website has a wealth of information. He also has a collection of CHIP-8 games and programs in his GAMES.zip.

Compilation and Usage

To use the emulator:

The assembler and disassemblers are simple command line applications and platform independent.

To use the assembler, type

$ ./c8asm -o file.c8h file.asm

This will assemble file.asm into a binary file.c8h. If the -o is not specified it will default to a.c8h.

To use the disassembler, run the command

$ ./c8dasm a.ch8 > outfile.asm

where a.ch8 is the file you want to disassemble.

Interpreter Implementations

The core of the emulator is in chip8.c. The idea is that this core be platform independent and then hooks are provided for platform specific implementations.

The API is described in chip8.h. The docs target in the Makefile generates HTML documentation from it.

Two implementations are provided in this repository:

  1. A SDL-based implentation (https://www.libsdl.org/) which is intended for portability, and
  2. a native Windows implementation which is intended for small size and requires no third party dependencies.

In both versions

The render() function checks the keyboard and executes the interpreter a couple of times by calling c8_step() and redraws the screen if it changed. The SDL and Win32 frameworks were written in such a way that the render() function works with both with only a couple of minor modifications.

The implementations feature a rudimentary debugger: Press F5 to pause a running game. The program counter and the current instruction will be displayed at the bottom of the screen, along with the values of the 16 Vx registers. Press F6 to step through the program to the next instruction and F8 to resume the program.

The Makefile will build the SDL version by default, and build the GDI version under Windows.

SDL Implementation

The SDL-based implementation is intended for portability. The files pocadv.c and pocadv.h implement a wrapper around the SDL that contains the main() function, the SDL event loops and so on.

The included emscripten.mak file is used to compile the SDL implementation to JavaScript with Emscripten for running the interpreter in a web browser. The chip8.html is a wrapper around the Emscripten-generated JavaScript. If you want to use this implementation:

  1. You need to put your CHIP-8 binary file in a ./GAMES/ directory
  2. Run make -f emscripten.mak
  3. Change the Module.arguments variable in the JavaScript in chip8.html
  4. Serve chip8.html in a web server.

I built the emscripten version through the emscripten SDK installed according to the installation instructions. I had some linker errors with Ubuntu's emscripten package that I couldn't resolve.

Win32/GDI Implementation

The native Windows version uses a simple hook around the Win32 GDI and requires no third party dependencies.

gdi.h and gdi.c implements the native Windows code. It implements a WinMain function with the main Win32 events processing loop. It binds the window's GDI context to a Bitmap object so that a render function can draw onto it and fires off periodic WM_PAINT messages which calls the render() function to draw the screen.

Implementation Notes

I've consulted several sources for my implementation (see references below), and there were some discrepancies. This is how I handled them:

References and Links

License

This code is licensed under the Apache license version 2:

    Copyright 2015-2016 Werner Stoop

    Licensed under the Apache License, Version 2.0 (the "License");
    you may not use this file except in compliance with the License.
    You may obtain a copy of the License at

        http://www.apache.org/licenses/LICENSE-2.0

    Unless required by applicable law or agreed to in writing, software
    distributed under the License is distributed on an "AS IS" BASIS,
    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    See the License for the specific language governing permissions and
    limitations under the License.

TODO/Roadmap/Ideas

Porting to the Amiga 500 might be an interesting challenge to get it truly portable: The Amiga's bus is word aligned, so if the program counter is ever an odd number then the system might crash when it tries to retrieve an instruction. Also, the Amiga is big endian, so that might reveal some problems as well.

XO-Chip compatibility seems like something worth striving for. Here's a short checklist of the changes. Also look at how Octo modifies some instructions.