Awesome
Neuropod
What is Neuropod?
Neuropod is a library that provides a uniform interface to run deep learning models from multiple frameworks in C++ and Python. Neuropod makes it easy for researchers to build models in a framework of their choosing while also simplifying productionization of these models.
It currently supports TensorFlow, PyTorch, TorchScript, Keras and Ludwig.
For more information:
Why use Neuropod?
Run models from any supported framework using one API
Running a TensorFlow model looks exactly like running a PyTorch model.
x = np.array([1, 2, 3, 4])
y = np.array([5, 6, 7, 8])
for model_path in [TF_ADDITION_MODEL_PATH, PYTORCH_ADDITION_MODEL_PATH]:
# Load the model
neuropod = load_neuropod(model_path)
# Run inference
results = neuropod.infer({"x": x, "y": y})
# array([6, 8, 10, 12])
print results["out"]
See the tutorial, Python guide, or C++ guide for more examples.
Some benefits of this include:
- All of your inference code is framework agnostic.
- You can easily switch between deep learning frameworks if necessary without changing runtime code.
- Avoid the learning curve of using the C++ libtorch API and the C/C++ TF API
Any Neuropod model can be run from both C++ and Python (even PyTorch models that have not been converted to TorchScript).
Define a Problem API
This lets you focus more on the problem you're solving rather than the framework you're using to solve it.
For example, if you define a problem API for 2d object detection, any model that implements it can reuse all the existing inference code and infrastructure for that problem.
INPUT_SPEC = [
# BGR image
{"name": "image", "dtype": "uint8", "shape": (1200, 1920, 3)},
]
OUTPUT_SPEC = [
# shape: (num_detections, 4): (xmin, ymin, xmax, ymax)
# These values are in units of pixels. The origin is the top left corner
# with positive X to the right and positive Y towards the bottom of the image
{"name": "boxes", "dtype": "float32", "shape": ("num_detections", 4)},
# The list of classes that the network can output
# This must be some subset of ['vehicle', 'person', 'motorcycle', 'bicycle']
{"name": "supported_object_classes", "dtype": "string", "shape": ("num_classes",)},
# The probability of each class for each detection
# These should all be floats between 0 and 1
{"name": "object_class_probability", "dtype": "float32", "shape": ("num_detections", "num_classes")},
]
This lets you
- Build a single metrics pipeline for a problem
- Easily compare models solving the same problem (even if they're in different frameworks)
- Build optimized inference code that can run any model that solves a particular problem
- Swap out models that solve the same problem at runtime with no code change (even if the models are from different frameworks)
- Run fast experiments
See the tutorial for more details.
Build generic tools and pipelines
If you have several models that take in a similar set of inputs, you can build and optimize one framework-agnostic input generation pipeline and share it across models.
Other benefits
-
Fully self-contained models (including custom ops)
-
Tested on platforms including
- Mac, Linux, Linux (GPU)
- Four or five versions of each supported framework
- Five versions of Python
-
Model isolation with out-of-process execution
- Use multiple different versions of frameworks in the same application
- Ex: Experimental models using Torch nightly along with models using Torch 1.1.0
- Use multiple different versions of frameworks in the same application
-
Switch from running in-process to running out-of-process with one line of code
Getting started
See the basic introduction tutorial for an overview of how to get started with Neuropod.
The Python guide and C++ guide go into more detail on running Neuropod models.