Home

Awesome

Neuropod

What is Neuropod?

Neuropod is a library that provides a uniform interface to run deep learning models from multiple frameworks in C++ and Python. Neuropod makes it easy for researchers to build models in a framework of their choosing while also simplifying productionization of these models.

It currently supports TensorFlow, PyTorch, TorchScript, Keras and Ludwig.

For more information:

Why use Neuropod?

Run models from any supported framework using one API

Running a TensorFlow model looks exactly like running a PyTorch model.

x = np.array([1, 2, 3, 4])
y = np.array([5, 6, 7, 8])

for model_path in [TF_ADDITION_MODEL_PATH, PYTORCH_ADDITION_MODEL_PATH]:
    # Load the model
    neuropod = load_neuropod(model_path)

    # Run inference
    results = neuropod.infer({"x": x, "y": y})

    # array([6, 8, 10, 12])
    print results["out"]

See the tutorial, Python guide, or C++ guide for more examples.

Some benefits of this include:

Any Neuropod model can be run from both C++ and Python (even PyTorch models that have not been converted to TorchScript).

Define a Problem API

This lets you focus more on the problem you're solving rather than the framework you're using to solve it.

For example, if you define a problem API for 2d object detection, any model that implements it can reuse all the existing inference code and infrastructure for that problem.

INPUT_SPEC = [
    # BGR image
    {"name": "image", "dtype": "uint8", "shape": (1200, 1920, 3)},
]

OUTPUT_SPEC = [
    # shape: (num_detections, 4): (xmin, ymin, xmax, ymax)
    # These values are in units of pixels. The origin is the top left corner
    # with positive X to the right and positive Y towards the bottom of the image
    {"name": "boxes", "dtype": "float32", "shape": ("num_detections", 4)},

    # The list of classes that the network can output
    # This must be some subset of ['vehicle', 'person', 'motorcycle', 'bicycle']
    {"name": "supported_object_classes", "dtype": "string", "shape": ("num_classes",)},

    # The probability of each class for each detection
    # These should all be floats between 0 and 1
    {"name": "object_class_probability", "dtype": "float32", "shape": ("num_detections", "num_classes")},
]

This lets you

See the tutorial for more details.

Build generic tools and pipelines

If you have several models that take in a similar set of inputs, you can build and optimize one framework-agnostic input generation pipeline and share it across models.

Other benefits

Getting started

See the basic introduction tutorial for an overview of how to get started with Neuropod.

The Python guide and C++ guide go into more detail on running Neuropod models.