Home

Awesome

Generating Multiple Objects at Spatially Distinct Locations

Pytorch implementation for reproducing the results from the paper Generating Multiple Objects at Spatially Distinct Locations by Tobias Hinz, Stefan Heinrich, and Stefan Wermter accepted for publication at the International Conference on Learning Representations 2019.

For more information and visualizations also see our blog post

Our poster can be found here

Have a look at our follow-up work Semantic Object Accuracy for Generative Text-to-Image Synthesis with available code.

Model-Architecture

Dependencies

Please add the project folder to PYTHONPATH and install the required dependencies:

pip install -r requirements.txt

Data

Training

Evaluating

Pretrained Models

Examples Generated by the Pretrained Models

Multi-MNIST

Multi-Mnist Examples

CLEVR

CLEVR Examples

MS-COCO

StackGAN Architecture

COCO-StackGAN Examples

AttnGAN Architecture

COCO-AttnGAN Examples

Acknowledgement

Citing

If you find our model useful in your research please consider citing:

@inproceedings{hinz2019generating,
title     = {Generating Multiple Objects at Spatially Distinct Locations},
author    = {Tobias Hinz and Stefan Heinrich and Stefan Wermter},
booktitle = {International Conference on Learning Representations},
year      = {2019},
url       = {https://openreview.net/forum?id=H1edIiA9KQ},
}