Awesome
AttnGAN
Pytorch implementation for reproducing AttnGAN results in the paper AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks by Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang, Zhe Gan, Xiaolei Huang, Xiaodong He. (This work was performed when Tao was an intern with Microsoft Research).
<img src="framework.png" width="900px" height="350px"/>Dependencies
python 2.7
Pytorch
In addition, please add the project folder to PYTHONPATH and pip install
the following packages:
python-dateutil
easydict
pandas
torchfile
nltk
scikit-image
Data
- Download our preprocessed metadata for birds coco and save them to
data/
- Download the birds image data. Extract them to
data/birds/
- Download coco dataset and extract the images to
data/coco/
Training
-
Pre-train DAMSM models:
- For bird dataset:
python pretrain_DAMSM.py --cfg cfg/DAMSM/bird.yml --gpu 0
- For coco dataset:
python pretrain_DAMSM.py --cfg cfg/DAMSM/coco.yml --gpu 1
- For bird dataset:
-
Train AttnGAN models:
- For bird dataset:
python main.py --cfg cfg/bird_attn2.yml --gpu 2
- For coco dataset:
python main.py --cfg cfg/coco_attn2.yml --gpu 3
- For bird dataset:
-
*.yml
files are example configuration files for training/evaluation our models.
Pretrained Model
-
DAMSM for bird. Download and save it to
DAMSMencoders/
-
DAMSM for coco. Download and save it to
DAMSMencoders/
-
AttnGAN for bird. Download and save it to
models/
-
AttnGAN for coco. Download and save it to
models/
-
AttnDCGAN for bird. Download and save it to
models/
- This is an variant of AttnGAN which applies the propsoed attention mechanisms to DCGAN framework.
Sampling
- Run
python main.py --cfg cfg/eval_bird.yml --gpu 1
to generate examples from captions in files listed in "./data/birds/example_filenames.txt". Results are saved toDAMSMencoders/
. - Change the
eval_*.yml
files to generate images from other pre-trained models. - Input your own sentence in "./data/birds/example_captions.txt" if you wannt to generate images from customized sentences.
Validation
- To generate images for all captions in the validation dataset, change B_VALIDATION to True in the eval_*.yml. and then run
python main.py --cfg cfg/eval_bird.yml --gpu 1
- We compute inception score for models trained on birds using StackGAN-inception-model.
- We compute inception score for models trained on coco using improved-gan/inception_score.
Examples generated by AttnGAN [Blog]
bird example | coco example |
---|---|
Creating an API
Evaluation code embedded into a callable containerized API is included in the eval\
folder.
Citing AttnGAN
If you find AttnGAN useful in your research, please consider citing:
@article{Tao18attngan,
author = {Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang, Zhe Gan, Xiaolei Huang, Xiaodong He},
title = {AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks},
Year = {2018},
booktitle = {{CVPR}}
}
Reference