Home

Awesome

defusedxml -- defusing XML bombs and other exploits

Latest Version Supported Python versions Travis CI codecov PyPI downloads Code style: black

"It's just XML, what could probably go wrong?"

Christian Heimes <christian@python.org>

Synopsis

The results of an attack on a vulnerable XML library can be fairly dramatic. With just a few hundred Bytes of XML data an attacker can occupy several Gigabytes of memory within seconds. An attacker can also keep CPUs busy for a long time with a small to medium size request. Under some circumstances it is even possible to access local files on your server, to circumvent a firewall, or to abuse services to rebound attacks to third parties.

The attacks use and abuse less common features of XML and its parsers. The majority of developers are unacquainted with features such as processing instructions and entity expansions that XML inherited from SGML. At best they know about <!DOCTYPE> from experience with HTML but they are not aware that a document type definition (DTD) can generate an HTTP request or load a file from the file system.

None of the issues is new. They have been known for a long time. Billion laughs was first reported in 2003. Nevertheless some XML libraries and applications are still vulnerable and even heavy users of XML are surprised by these features. It's hard to say whom to blame for the situation. It's too short sighted to shift all blame on XML parsers and XML libraries for using insecure default settings. After all they properly implement XML specifications. Application developers must not rely that a library is always configured for security and potential harmful data by default.

<div class="contents" depth="2">

Table of Contents

</div>

Attack vectors

billion laughs / exponential entity expansion

The Billion Laughs attack -- also known as exponential entity expansion --uses multiple levels of nested entities. The original example uses 9 levels of 10 expansions in each level to expand the string lol to a string of 3 * 10 <sup>9</sup> bytes, hence the name "billion laughs". The resulting string occupies 3 GB (2.79 GiB) of memory; intermediate strings require additional memory. Because most parsers don't cache the intermediate step for every expansion it is repeated over and over again. It increases the CPU load even more.

An XML document of just a few hundred bytes can disrupt all services on a machine within seconds.

Example XML:

<!DOCTYPE xmlbomb [
<!ENTITY a "1234567890" >
<!ENTITY b "&a;&a;&a;&a;&a;&a;&a;&a;">
<!ENTITY c "&b;&b;&b;&b;&b;&b;&b;&b;">
<!ENTITY d "&c;&c;&c;&c;&c;&c;&c;&c;">
]>
<bomb>&d;</bomb>

quadratic blowup entity expansion

A quadratic blowup attack is similar to a Billion Laughs attack; it abuses entity expansion, too. Instead of nested entities it repeats one large entity with a couple of thousand chars over and over again. The attack isn't as efficient as the exponential case but it avoids triggering countermeasures of parsers against heavily nested entities. Some parsers limit the depth and breadth of a single entity but not the total amount of expanded text throughout an entire XML document.

A medium-sized XML document with a couple of hundred kilobytes can require a couple of hundred MB to several GB of memory. When the attack is combined with some level of nested expansion an attacker is able to achieve a higher ratio of success.

<!DOCTYPE bomb [
<!ENTITY a "xxxxxxx... a couple of ten thousand chars">
]>
<bomb>&a;&a;&a;... repeat</bomb>

external entity expansion (remote)

Entity declarations can contain more than just text for replacement. They can also point to external resources by public identifiers or system identifiers. System identifiers are standard URIs. When the URI is a URL (e.g. a http:// locator) some parsers download the resource from the remote location and embed them into the XML document verbatim.

Simple example of a parsed external entity:

<!DOCTYPE external [
<!ENTITY ee SYSTEM "http://www.python.org/some.xml">
]>
<root>&ee;</root>

The case of parsed external entities works only for valid XML content. The XML standard also supports unparsed external entities with a NData declaration.

External entity expansion opens the door to plenty of exploits. An attacker can abuse a vulnerable XML library and application to rebound and forward network requests with the IP address of the server. It highly depends on the parser and the application what kind of exploit is possible. For example:

external entity expansion (local file)

External entities with references to local files are a sub-case of external entity expansion. It's listed as an extra attack because it deserves extra attention. Some XML libraries such as lxml disable network access by default but still allow entity expansion with local file access by default. Local files are either referenced with a file:// URL or by a file path (either relative or absolute). Additionally, lxml's libxml2 has catalog support. XML catalogs like /etc/xml/catalog are XML files, which map schema URIs to local files.

An attacker may be able to access and download all files that can be read by the application process. This may include critical configuration files, too.

<!DOCTYPE external [
<!ENTITY ee SYSTEM "file:///PATH/TO/simple.xml">
]>
<root>&ee;</root>

DTD retrieval

This case is similar to external entity expansion, too. Some XML libraries like Python's xml.dom.pulldom retrieve document type definitions from remote or local locations. Several attack scenarios from the external entity case apply to this issue as well.

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
  "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
    <head/>
    <body>text</body>
</html>

Python XML Libraries

kindsaxetreeminidompulldomxmlrpc
billion laughsMaybe (1)Maybe (1)Maybe (1)Maybe (1)Maybe (1)
quadratic blowupMaybe (1)Maybe (1)Maybe (1)Maybe (1)Maybe (1)
external entity expansion (remote)False (2)False (3)False (4)False (2)false
external entity expansion (local file)False (2)False (3)False (4)False (2)false
DTD retrievalFalse (2)FalseFalseFalse (2)false
gzip bombFalseFalseFalseFalseTrue
xpath support (6)FalseFalseFalseFalseFalse
xsl(t) support (6)FalseFalseFalseFalseFalse
xinclude support (6)FalseTrue (5)FalseFalseFalse
C libraryexpatexpatexpatexpatexpat

vulnerabilities and features

  1. expat parser >= 2.4.0 has billion laughs protection against XML bombs (CVE-2013-0340). The parser has sensible defaults for XML_SetBillionLaughsAttackProtectionMaximumAmplification and XML_SetBillionLaughsAttackProtectionActivationThreshold.
  2. Python >= 3.6.8, >= 3.7.1, and >= 3.8 no longer retrieve local and remote resources with urllib, see bpo-17239.
  3. xml.etree doesn't expand entities and raises a ParserError when an entity occurs.
  4. minidom doesn't expand entities and simply returns the unexpanded entity verbatim.
  5. Library has (limited) XInclude support but requires an additional step to process inclusion.
  6. These are features but they may introduce exploitable holes, see Other things to consider

Settings in standard library

xml.sax.handler Features

feature_external_ges (http://xml.org/sax/features/external-general-entities)
disables external entity expansion

feature_external_pes (http://xml.org/sax/features/external-parameter-entities)
the option is ignored and doesn't modify any functionality

DOM xml.dom.xmlbuilder.Options

external_parameter_entities
ignored

external_general_entities
ignored

external_dtd_subset
ignored

entities
unsure

defusedxml

The defusedxml package (defusedxml on PyPI) contains several Python-only workarounds and fixes for denial of service and other vulnerabilities in Python's XML libraries. In order to benefit from the protection you just have to import and use the listed functions / classes from the right defusedxml module instead of the original module. Merely defusedxml.xmlrpc is implemented as monkey patch.

Instead of:

>>> from xml.etree.ElementTree import parse
>>> et = parse(xmlfile)

alter code to:

>>> from defusedxml.ElementTree import parse
>>> et = parse(xmlfile)
<div class="note"> <div class="title">

Note

</div>

The defusedxml modules are not drop-in replacements of their stdlib counterparts. The modules only provide functions and classes related to parsing and loading of XML. For all other features, use the classes, functions, and constants from the stdlib modules. For example:

>>> from defusedxml import ElementTree as DET
>>> from xml.etree.ElementTree as ET

>>> root = DET.fromstring("<root/>")
>>> root.append(ET.Element("item"))
>>> ET.tostring(root)
b'<root><item /></root>'
</div>

Additionally the package has an untested function to monkey patch all stdlib modules with defusedxml.defuse_stdlib().

<div class="warning"> <div class="title">

Warning

</div>

defuse_stdlib() should be avoided. It can break third party package or cause surprising side effects. Instead you should use the parsing features of defusedxml explicitly.

</div>

All functions and parser classes accept three additional keyword arguments. They return either the same objects as the original functions or compatible subclasses.

forbid_dtd (default: False)
disallow XML with a <!DOCTYPE> processing instruction and raise a DTDForbidden exception when a DTD processing instruction is found.

forbid_entities (default: True)
disallow XML with <!ENTITY> declarations inside the DTD and raise an EntitiesForbidden exception when an entity is declared.

forbid_external (default: True)
disallow any access to remote or local resources in external entities or DTD and raising an ExternalReferenceForbidden exception when a DTD or entity references an external resource.

defusedxml (package)

DefusedXmlException, DTDForbidden, EntitiesForbidden, ExternalReferenceForbidden, NotSupportedError

defuse_stdlib() (experimental)

defusedxml.cElementTree

NOTE defusedxml.cElementTree is deprecated and will be removed in a future release. Import from defusedxml.ElementTree instead.

parse(), iterparse(), fromstring(), XMLParser

defusedxml.ElementTree

parse(), iterparse(), fromstring(), XMLParser

defusedxml.expatreader

create_parser(), DefusedExpatParser

defusedxml.sax

parse(), parseString(), make_parser()

defusedxml.expatbuilder

parse(), parseString(), DefusedExpatBuilder, DefusedExpatBuilderNS

defusedxml.minidom

parse(), parseString()

defusedxml.pulldom

parse(), parseString()

defusedxml.xmlrpc

The fix is implemented as monkey patch for the stdlib's xmlrpc package (3.x) or xmlrpclib module (2.x). The function <span class="title-ref">monkey_patch()</span> enables the fixes, <span class="title-ref">unmonkey_patch()</span> removes the patch and puts the code in its former state.

The monkey patch protects against XML related attacks as well as decompression bombs and excessively large requests or responses. The default setting is 30 MB for requests, responses and gzip decompression. You can modify the default by changing the module variable <span class="title-ref">MAX_DATA</span>. A value of <span class="title-ref">-1</span> disables the limit.

defusedxml.lxml

DEPRECATED The module is deprecated and will be removed in a future release.

lxml is safe against most attack scenarios. lxml uses libxml2 for parsing XML. The library has builtin mitigations against billion laughs and quadratic blowup attacks. The parser allows a limit amount of entity expansions, then fails. lxml also disables network access by default. libxml2 lxml FAQ lists additional recommendations for safe parsing, for example counter measures against compression bombs.

The default parser resolves entities and protects against huge trees and deeply nested entities. To disable entities expansion, use a custom parser object:

from lxml import etree

parser = etree.XMLParser(resolve_entities=False)
root = etree.fromstring("<example/>", parser=parser)

The module acts as an example how you could protect code that uses lxml.etree. It implements a custom Element class that filters out Entity instances, a custom parser factory and a thread local storage for parser instances. It also has a check_docinfo() function which inspects a tree for internal or external DTDs and entity declarations. In order to check for entities lxml > 3.0 is required.

parse(), fromstring() RestrictedElement, GlobalParserTLS, getDefaultParser(), check_docinfo()

defusedexpat

The defusedexpat package (defusedexpat on PyPI) is no longer supported. expat parser 2.4.0 and newer come with billion laughs protection against XML bombs.

How to avoid XML vulnerabilities

Update to Python 3.6.8, 3.7.1, or newer. The SAX and DOM parser do not load external entities from files or network resources.

Update to expat to 2.4.0 or newer. It has billion laughs protection with sensible default limits to mitigate billion laughs and quadratic blowup.

Official binaries from python.org use libexpat 2.4.0 since 3.7.12, 3.8.12, 3.9.7, and 3.10.0 (August 2021). Third party vendors may use older or newer versions of expat. pyexpat.version_info contains the current runtime version of libexpat. Vendors may have backported fixes to older versions without bumping the version number.

Example:

import sys
import pyexpat

has_mitigations = (
    sys.version_info >= (3, 7, 1) and
    pyexpat.version_info >= (2, 4, 0)
)

Best practices

(based on Brad Hill's Attacking XML Security)

Other things to consider

XML, XML parsers and processing libraries have more features and possible issue that could lead to DoS vulnerabilities or security exploits in applications. I have compiled an incomplete list of theoretical issues that need further research and more attention. The list is deliberately pessimistic and a bit paranoid, too. It contains things that might go wrong under daffy circumstances.

attribute blowup / hash collision attack

XML parsers may use an algorithm with quadratic runtime O(n <sup>2</sup>) to handle attributes and namespaces. If it uses hash tables (dictionaries) to store attributes and namespaces the implementation may be vulnerable to hash collision attacks, thus reducing the performance to O(n <sup>2</sup>) again. In either case an attacker is able to forge a denial of service attack with an XML document that contains thousands upon thousands of attributes in a single node.

I haven't researched yet if expat, pyexpat or libxml2 are vulnerable.

decompression bomb

The issue of decompression bombs (aka ZIP bomb) apply to all XML libraries that can parse compressed XML stream like gzipped HTTP streams or LZMA-ed files. For an attacker it can reduce the amount of transmitted data by three magnitudes or more. Gzip is able to compress 1 GiB zeros to roughly 1 MB, lzma is even better:

$ dd if=/dev/zero bs=1M count=1024 | gzip > zeros.gz
$ dd if=/dev/zero bs=1M count=1024 | lzma -z > zeros.xy
$ ls -sh zeros.*
1020K zeros.gz
 148K zeros.xy

None of Python's standard XML libraries decompress streams except for xmlrpclib. The module is vulnerable <https://bugs.python.org/issue16043> to decompression bombs.

lxml can load and process compressed data through libxml2 transparently. libxml2 can handle even very large blobs of compressed data efficiently without using too much memory. But it doesn't protect applications from decompression bombs. A carefully written SAX or iterparse-like approach can be safe.

Processing Instruction

PI's like:

<?xml-stylesheet type="text/xsl" href="style.xsl"?>

may impose more threats for XML processing. It depends if and how a processor handles processing instructions. The issue of URL retrieval with network or local file access apply to processing instructions, too.

Other DTD features

DTD has more features like <!NOTATION>. I haven't researched how these features may be a security threat.

XPath

XPath statements may introduce DoS vulnerabilities. Code should never execute queries from untrusted sources. An attacker may also be able to create an XML document that makes certain XPath queries costly or resource hungry.

XPath injection attacks

XPath injeciton attacks pretty much work like SQL injection attacks. Arguments to XPath queries must be quoted and validated properly, especially when they are taken from the user. The page Avoid the dangers of XPath injection list some ramifications of XPath injections.

Python's standard library doesn't have XPath support. Lxml supports parameterized XPath queries which does proper quoting. You just have to use its xpath() method correctly:

# DON'T
>>> tree.xpath("/tag[@id='%s']" % value)

# instead do
>>> tree.xpath("/tag[@id=$tagid]", tagid=name)

XInclude

XML Inclusion is another way to load and include external files:

<root xmlns:xi="http://www.w3.org/2001/XInclude">
  <xi:include href="filename.txt" parse="text" />
</root>

This feature should be disabled when XML files from an untrusted source are processed. Some Python XML libraries and libxml2 support XInclude but don't have an option to sandbox inclusion and limit it to allowed directories.

XMLSchema location

A validating XML parser may download schema files from the information in a xsi:schemaLocation attribute.

<ead xmlns="urn:isbn:1-931666-22-9"
     xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
     xsi:schemaLocation="urn:isbn:1-931666-22-9 http://www.loc.gov/ead/ead.xsd">
</ead>

XSL Transformation

You should keep in mind that XSLT is a Turing complete language. Never process XSLT code from unknown or untrusted source! XSLT processors may allow you to interact with external resources in ways you can't even imagine. Some processors even support extensions that allow read/write access to file system, access to JRE objects or scripting with Jython.

Example from Attacking XML Security for Xalan-J:

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:rt="http://xml.apache.org/xalan/java/java.lang.Runtime"
 xmlns:ob="http://xml.apache.org/xalan/java/java.lang.Object"
 exclude-result-prefixes= "rt ob">
 <xsl:template match="/">
   <xsl:variable name="runtimeObject" select="rt:getRuntime()"/>
   <xsl:variable name="command"
     select="rt:exec($runtimeObject, &apos;c:\Windows\system32\cmd.exe&apos;)"/>
   <xsl:variable name="commandAsString" select="ob:toString($command)"/>
   <xsl:value-of select="$commandAsString"/>
 </xsl:template>
</xsl:stylesheet>

Related CVEs

CVE-2013-1664
Unrestricted entity expansion induces DoS vulnerabilities in Python XML libraries (XML bomb)

CVE-2013-1665
External entity expansion in Python XML libraries inflicts potential security flaws and DoS vulnerabilities

Other languages / frameworks

Several other programming languages and frameworks are vulnerable as well. A couple of them are affected by the fact that libxml2 up to 2.9.0 has no protection against quadratic blowup attacks. Most of them have potential dangerous default settings for entity expansion and external entities, too.

Perl

Perl's XML::Simple is vulnerable to quadratic entity expansion and external entity expansion (both local and remote).

Ruby

Ruby's REXML document parser is vulnerable to entity expansion attacks (both quadratic and exponential) but it doesn't do external entity expansion by default. In order to counteract entity expansion you have to disable the feature:

REXML::Document.entity_expansion_limit = 0

libxml-ruby and hpricot don't expand entities in their default configuration.

PHP

PHP's SimpleXML API is vulnerable to quadratic entity expansion and loads entities from local and remote resources. The option LIBXML_NONET disables network access but still allows local file access. LIBXML_NOENT seems to have no effect on entity expansion in PHP 5.4.6.

C# / .NET / Mono

Information in XML DoS and Defenses (MSDN) suggest that .NET is vulnerable with its default settings. The article contains code snippets how to create a secure XML reader:

XmlReaderSettings settings = new XmlReaderSettings();
settings.ProhibitDtd = false;
settings.MaxCharactersFromEntities = 1024;
settings.XmlResolver = null;
XmlReader reader = XmlReader.Create(stream, settings);

Java

Untested. The documentation of Xerces and its Xerces SecurityMananger sounds like Xerces is also vulnerable to billion laugh attacks with its default settings. It also does entity resolving when an org.xml.sax.EntityResolver is configured. I'm not yet sure about the default setting here.

Java specialists suggest to have a custom builder factory:

DocumentBuilderFactory builderFactory = DocumentBuilderFactory.newInstance();
builderFactory.setXIncludeAware(False);
builderFactory.setExpandEntityReferences(False);
builderFactory.setFeature(XMLConstants.FEATURE_SECURE_PROCESSING, True);
# either
builderFactory.setFeature("http://apache.org/xml/features/disallow-doctype-decl", True);
# or if you need DTDs
builderFactory.setFeature("http://xml.org/sax/features/external-general-entities", False);
builderFactory.setFeature("http://xml.org/sax/features/external-parameter-entities", False);
builderFactory.setFeature("http://apache.org/xml/features/nonvalidating/load-external-dtd", False);
builderFactory.setFeature("http://apache.org/xml/features/nonvalidating/load-dtd-grammar", False);

TODO

License

Copyright (c) 2013-2023 by Christian Heimes <christian@python.org>

Licensed to PSF under a Contributor Agreement.

See https://www.python.org/psf/license for licensing details.

Acknowledgements

Brett Cannon (Python Core developer)
review and code cleanup

Antoine Pitrou (Python Core developer)
code review

Aaron Patterson, Ben Murphy and Michael Koziarski (Ruby community)
Many thanks to Aaron, Ben and Michael from the Ruby community for their report and assistance.

Thierry Carrez (OpenStack)
Many thanks to Thierry for his report to the Python Security Response Team on behalf of the OpenStack security team.

Carl Meyer (Django)
Many thanks to Carl for his report to PSRT on behalf of the Django security team.

Daniel Veillard (libxml2)
Many thanks to Daniel for his insight and assistance with libxml2.

semantics GmbH (https://www.semantics.de/)
Many thanks to my employer semantics for letting me work on the issue during working hours as part of semantics's open source initiative.

References

Changelog

defusedxml 0.8.0

Release date: 2023

defusedxml 0.8.0rc2

Release date: 29-Sep-2023

defusedxml 0.8.0rc1

Release date: 26-Sep-2023

defusedxml 0.7.1

Release date: 08-Mar-2021

defusedxml 0.7.0

Release date: 4-Mar-2021

defusedxml 0.7.0rc2

Release date: 12-Jan-2021

defusedxml 0.7.0rc1

Release date: 04-May-2020

defusedxml 0.6.0

Release date: 17-Apr-2019

defusedxml 0.6.0rc1

Release date: 14-Apr-2019

defusedxml 0.5.0

Release date: 07-Feb-2017

defusedxml 0.5.0.rc1

Release date: 28-Jan-2017

defusedxml 0.4.1

Release date: 28-Mar-2013

defusedxml 0.4

Release date: 25-Feb-2013

defusedxml 0.3

Release date: 19-Feb-2013

defusedxml 0.2

Release date: 15-Feb-2013

defusedxml 0.1

Release date: 08-Feb-2013