Home

Awesome

Lag-Llama: Towards Foundation Models for Probabilistic Time Series Forecasting

lag-llama-architecture

Lag-Llama is the <b>first open-source foundation model for time series forecasting</b>!

[Tweet Thread]

[Model Weights] [Colab Demo 1: Zero-Shot Forecasting] [Colab Demo 2: (Preliminary Finetuning)]

[Paper]

[Video]


<b>Updates</b>:


Current Features:

💫 <b>Zero-shot forecasting</b> on a dataset of <b>any frequency</b> for <b>any prediction length</b>, using <a href="https://colab.research.google.com/drive/1DRAzLUPxsd-0r8b-o4nlyFXrjw_ZajJJ?usp=sharing" target="_blank">Colab Demo 1.</a><br/>

💫 <b>Finetuning</b> on a dataset using Colab Demo 2.

💫 <b>Reproducing</b> experiments in the paper using the released scripts. See Reproducing Experiments in the Paper for details.

Note: Please see the best practices section when using the model for zero-shot prediction and finetuning.


Reproducing Experiments in the Paper

To replicate the pretraining setup used in the paper, please see the pretraining script. Once a model is pretrained, instructions to finetune it with the setup in the paper can be found in the finetuning script.

Best Practices

Here are some general tips in using Lag-Llama.

<!-- We recommend reading the [paper](https://arxiv.org/abs/2310.08278) for all details about the model. -->

General Information

Zero-Shot Forecasting

Fine-Tuning

If you are trying to benchmark the performance of the model under finetuning, or trying to obtain maximum performance from the model:

Contact

We are dedicated to ensuring the reproducility of our results, and would be happy to help clarify questions about benchmarking our model or about the experiments in the paper. The quickest way to reach us would be by email. Please email both:

  1. Arjun Ashok - arjun [dot] ashok [at] servicenow [dot] com
  2. Kashif Rasul - kashif [dot] rasul [at] gmail [dot] com

If you have questions about the model usage (or) code (or) have specific errors (eg. using it with your own dataset), it would be best to create an issue in the GitHub repository.

Citing this work

Please use the following Bibtex entry to cite Lag-Llama.

@misc{rasul2024lagllama,
      title={Lag-Llama: Towards Foundation Models for Probabilistic Time Series Forecasting}, 
      author={Kashif Rasul and Arjun Ashok and Andrew Robert Williams and Hena Ghonia and Rishika Bhagwatkar and Arian Khorasani and Mohammad Javad Darvishi Bayazi and George Adamopoulos and Roland Riachi and Nadhir Hassen and Marin Biloš and Sahil Garg and Anderson Schneider and Nicolas Chapados and Alexandre Drouin and Valentina Zantedeschi and Yuriy Nevmyvaka and Irina Rish},
      year={2024},
      eprint={2310.08278},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}