Home

Awesome

News

Introduction

Official Paddle implementations of PSENet [1].

[1] W. Wang, E. Xie, X. Li, W. Hou, T. Lu, G. Yu, and S. Shao. Shape robust text detection with progressive scale expansion network. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., pages 9336–9345, 2019.<br>

Recommended environment

Python 3.6+
paddlepaddle-gpu 2.0.2
nccl 2.0+
mmcv 0.2.12
editdistance
Polygon3
pyclipper
opencv-python 3.4.2.17
Cython

Install

Install paddle following the official tutorial.

pip install -r requirement.txt
./compile.sh

Training

CUDA_VISIBLE_DEVICES=0,1,2,3 python dist_train.py ${CONFIG_FILE}

For example:

CUDA_VISIBLE_DEVICES=0,1,2,3 python dist_train.py config/psenet/psenet_r50_ic15_736.py

Test

python test.py ${CONFIG_FILE} ${CHECKPOINT_FILE}

For example:

python test.py config/psenet/psenet_r50_ic15_736.py checkpoints/psenet_r50_ic15_736/checkpoint.pdparams

Evaluation

Introduction

The evaluation scripts of ICDAR 2015 (IC15) dataset.

ICDAR 2015

Text detection

./eval_ic15.sh

Benchmark

Results

ICDAR 2015

MethodBackboneFine-tuningScaleConfigPrecision (%)Recall (%)F-measure (%)Model
PSENetResNet50NShorter Side: 736psenet_r50_ic15_736.py82.279.480.7Google Drive

Citation

@inproceedings{wang2019shape,
  title={Shape robust text detection with progressive scale expansion network},
  author={Wang, Wenhai and Xie, Enze and Li, Xiang and Hou, Wenbo and Lu, Tong and Yu, Gang and Shao, Shuai},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={9336--9345},
  year={2019}
}

License

This project is developed and maintained by IMAGINE Lab@National Key Laboratory for Novel Software Technology, Nanjing University.

<img src="logo.jpg" alt="IMAGINE Lab">

This project is released under the Apache 2.0 license.