Home

Awesome

News

#f03c15 Python3 implementations of PSENet [1], PAN [2] and PAN++ [3] are released at https://github.com/whai362/pan_pp.pytorch.

[1] W. Wang, E. Xie, X. Li, W. Hou, T. Lu, G. Yu, and S. Shao. Shape robust text detection with progressive scale expansion network. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., pages 9336–9345, 2019.<br> [2] W. Wang, E. Xie, X. Song, Y. Zang, W. Wang, T. Lu, G. Yu, and C. Shen. Efficient and accurate arbitrary-shaped text detection with pixel aggregation network. In Proc. IEEE Int. Conf. Comp. Vis., pages 8440–8449, 2019.<br> [3] Paper is in preparation.

Shape Robust Text Detection with Progressive Scale Expansion Network

Requirements

Introduction

Progressive Scale Expansion Network (PSENet) is a text detector which is able to well detect the arbitrary-shape text in natural scene.

Training

CUDA_VISIBLE_DEVICES=0,1,2,3 python train_ic15.py

Testing

CUDA_VISIBLE_DEVICES=0 python test_ic15.py --scale 1 --resume [path of model]

Eval script for ICDAR 2015 and SCUT-CTW1500

cd eval
sh eval_ic15.sh
sh eval_ctw1500.sh

Performance (new version paper)

ICDAR 2015

MethodExtra DataPrecision (%)Recall (%)F-measure (%)FPS (1080Ti)Model
PSENet-1s (ResNet50)-81.4979.6880.571.6baiduyun(extract code: rxti); OneDrive
PSENet-1s (ResNet50)pretrain on IC17 MLT86.9284.585.691.6baiduyun(extract code: aieo); OneDrive
PSENet-4s (ResNet50)pretrain on IC17 MLT86.183.7784.923.8baiduyun(extract code: aieo); OneDrive

SCUT-CTW1500

MethodExtra DataPrecision (%)Recall (%)F-measure (%)FPS (1080Ti)Model
PSENet-1s (ResNet50)-80.5775.5578.03.9baiduyun(extract code: ksv7); OneDrive
PSENet-1s (ResNet50)pretrain on IC17 MLT84.8479.7382.23.9baiduyun(extract code: z7ac); OneDrive
PSENet-4s (ResNet50)pretrain on IC17 MLT82.0977.8479.98.4baiduyun(extract code: z7ac); OneDrive

Performance (old version paper)

ICDAR 2015 (training with ICDAR 2017 MLT)

MethodPrecision (%)Recall (%)F-measure (%)
PSENet-4s (ResNet152)87.9883.8785.88
PSENet-2s (ResNet152)89.3085.2287.21
PSENet-1s (ResNet152)88.7185.5187.08

ICDAR 2017 MLT

MethodPrecision (%)Recall (%)F-measure (%)
PSENet-4s (ResNet152)75.9867.5671.52
PSENet-2s (ResNet152)76.9768.3572.40
PSENet-1s (ResNet152)77.0168.4072.45

SCUT-CTW1500

MethodPrecision (%)Recall (%)F-measure (%)
PSENet-4s (ResNet152)80.4978.1379.29
PSENet-2s (ResNet152)81.9579.3080.60
PSENet-1s (ResNet152)82.5079.8981.17

ICPR MTWI 2018 Challenge 2

MethodPrecision (%)Recall (%)F-measure (%)
PSENet-1s (ResNet152)78.572.175.2

Results

<div align="center"> <img src="https://github.com/whai362/PSENet/blob/master/figure/res0.png"> </div> <p align="center"> Figure 3: The results on ICDAR 2015, ICDAR 2017 MLT and SCUT-CTW1500 </p>

Paper Link

[new version paper] https://arxiv.org/abs/1903.12473

[old version paper] https://arxiv.org/abs/1806.02559

Other Implements

[tensorflow version (thanks @liuheng92)] https://github.com/liuheng92/tensorflow_PSENet

Citation

@inproceedings{wang2019shape,
  title={Shape Robust Text Detection With Progressive Scale Expansion Network},
  author={Wang, Wenhai and Xie, Enze and Li, Xiang and Hou, Wenbo and Lu, Tong and Yu, Gang and Shao, Shuai},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={9336--9345},
  year={2019}
}