Home

Awesome

CapsNet-MXNet

This example is MXNet implementation of CapsNet:
Sara Sabour, Nicholas Frosst, Geoffrey E Hinton. Dynamic Routing Between Capsules. NIPS 2017

Log files for the error rate are uploaded in repository.


Usage

Install scipy with pip

pip install scipy

Install tensorboard with pip

pip install tensorboard

On Single gpu

python capsulenet.py --devices gpu0

On Multi gpus

python capsulenet.py --devices gpu0,gpu1

Full arguments

python capsulenet.py --batch_size 100 --devices gpu0,gpu1 --num_epoch 100 --lr 0.001 --num_routing 3 --model_prefix capsnet

Prerequisities

MXNet version above (0.11.0)
scipy version above (0.19.0)


Results

Train time takes about 36 seconds for each epoch (batch_size=100, 2 gtx 1080 gpus)

CapsNet classification test error on MNIST

python capsulenet.py --devices gpu0,gpu1 --lr 0.0005 --decay 0.99 --model_prefix lr_0_0005_decay_0_99 --batch_size 100 --num_routing 3 --num_epoch 200

TrialEpochtrain err(%)test err(%)train losstest loss
11200.060.310.00560.0064
21670.030.290.00480.0058
31820.040.310.00460.0058
average-0.0430.3030.0050.006

We achieved the best test error rate=0.29% and average test error=0.303%. It is the best accuracy and fastest training time result among other implementations(Keras, Tensorflow at 2017-11-23). The result on paper is 0.25% (average test error rate).

Implementationtest err(%)※train time/epochGPU Used
MXNet0.2936 sec2 GTX 1080
tensorflow0.49※ 10 minUnknown(4GB Memory)
Keras0.3055 sec2 GTX 1080 Ti