Home

Awesome

Notebooks

DOI Docker Pulls Docker Stars

A docker-based starter kit for machine learning via jupyter notebooks. Designed for those who just want a runtime environment and get on with machine learning.

notebooks_screenshot

Docker Images

To support both old and new environments, docker images cover various combinations of

Check this compatibility chart for the required version of Nvidia graphics driver for your host system.

Python 3 only as Python 2 is end-of-life, so deprecated.

All of the images include:

Visualization libraries:

Vision-centric libraries:

NLP libraries:

Tags

If you are reading this on Docker Hub, the links to Dockefile's will not work. Please start from project page instead.

Note: the default 'latest' tag does not exist. This is a design choice. Please choose a tag from below.

PyTorch

Images of Pytorch version 1.5 and higher include Pytorch Lightning.

Tag (OS-based python)CommentDockerfileInfo
pytorch2.4.1CPU-onlyDockerfile
pytorch2.3.0-cuda12.1Minimum required Nvidia Driver >= 525.60.13 (Linux) 528.33 (Windows). Toolkit Driver Version >= 530.30.02 (Linux) 531.14 (Windows).Dockerfile
pytorch2.3.0-cuda11.8Minimum required Nvidia Driver >= 450.80.02 (Linux) 452.39 (Windows). Toolkit Driver Version >= 520.61.05 (Linux) 520.06 (Windows)Dockerfile
pytorch2.0.1-cuda11.7Nvidia Driver >= 450.80.02 (Linux) 452.39 (Windows)Dockerfile
pytorch1.13.1CPU-onlyDockerfile
pytorch1.13.1-cuda11.7Nvidia Driver >= 450.80.02 (Linux) 452.39 (Windows)Dockerfile
pytorch1.13.1-cuda11.6Nvidia Driver >= 450.80.02 (Linux) 452.39 (Windows)Dockerfile
pytorch1.12.1-cuda11.3.1Nvidia Driver >= 450.80.02 (Linux) 452.39 (Windows)Dockerfile
pytorch1.12.1-cuda10.2Nvidia Driver >= 440.33 (Linux) 441.22 (Windows)Dockerfile
pytorch1.9.1-cuda11.1.1Nvidia Driver >= 450.80.02 (Linux) 452.39 (Windows)Dockerfile
pytorch1.7.1-cuda11Nvidia Driver >= 450.36.06 (Linux) 451.22 (Windows)Dockerfile
pytorch1.7.1-cuda101Nvidia Driver >= 418.xxDockerfile
pytorch1.7.1-cuda92Nvidia Driver >= 396.xxDockerfile
jupyter-pytorch1.2-py3-cuda10Nvidia Driver >= 410.xxDockerfile
jupyter-pytorch1.1-py3-cuda9Nvidia Driver >= 384.xxDockerfile
jupyter-pytorch1.0-py3-cuda8Nvidia Driver >= 375.xxDockerfile
Tag (Conda-based python)CommentDockerfileInfo
jupyter-pytorch1.3-conda3CPU-onlyDockerfile
jupyter-pytorch1.3-conda3-cuda92Nvidia Driver >= 396.37Dockerfile
jupyter-pytorch1.1-conda3-cuda9Nvidia Driver >= 384.xxDockerfile
jupyter-pytorch1.0-conda3-cuda8Nvidia Driver >= 375.xxDockerfile

Tensorflow (including Keras)

Tag (OS-based python)CommentDockerfileInfo
tf2.17.0CPU-onlyDockerfile
tf2.16.1-cuda12.3Minimum required Nvidia Driver >= 525.60.13 (Linux) 528.33 (Windows). Toolkit driver version >= 545.23.06 (Linux) 545.84 (Windows).Dockerfile
tf2.15.0-cuda11.8Nvidia Driver >= 450.80.02 (Linux) 452.39 (Windows)Dockerfile
tf2.11.1-cuda11.2Nvidia Driver >= 450.80.02 (Linux) 452.39 (Windows)Dockerfile
tf2.5.0-cuda11Nvidia Driver >= 450.36.06Dockerfile
tf2.3.4-cuda101Nvidia Driver >= 418.xxDockerfile
tf2.0.4-cuda10Nvidia Driver >= 410.xxDockerfile
tf1.15.5CPU-onlyDockerfile
tf1.15.5-cuda10Nvidia Driver >= 410.xxDockerfile
jupyter-keras-tf1.12.3-py3-cuda9Nvidia Driver >= 384.xxDockerfile
jupyter-keras-tf1.4.1-py3-cuda8Nvidia Driver >= 375.xxDockerfile
Tag (Conda-based python)CommentDockerfileInfo
jupyter-keras-tf1.14.0-conda3CPU-onlyDockerfile
jupyter-keras-tf1.14.0-conda3-cuda10Nvidia Driver >= 410.xxDockerfile
jupyter-keras-tf1.12.0-conda3-cuda9Nvidia Driver >= 384.xxDockerfile
jupyter-keras-tf1.4.1-conda3-cuda8Nvidia Driver >= 375.xxDockerfile

Internal Tags

For intermediate Docker images, from which final images are build from, see INTERNAL.md.

Deprecated Tags

For deprecated tags, see deprecated/README.md.

Usage

Step 1: pull pre-built images:

docker pull wqael/notebooks:<tag>

Step 2: launch image:

docker run -it -v $2:/notebooks -p 8888:8888 -p 6006:6006 $1

or, for GPU support

nvidia-docker run -it -v $2:/notebooks -p 8888:8888 -p 6006:6006 $1

where:

Step 3: From the log, copy-and-paste the line similar to the following to your favorite browser:

    Copy/paste this URL into your browser when you connect for the first time,
    to login with a token:
        http://localhost:8888/?token=<token string>

Bonus step: Use next generation Jupyter:

After jupyter home page is loaded, i.e. http://localhost:8888/tree, browse to http://localhost:8888/lab.

jupyter_lab_screenshot

Step 4: How to shutdown the docker image:

In the running image terminal (step 3), hit Ctrl+C twice.

Citation

If this project helps your research, don't hesitate to spread the word! Click on the badge below and find citation formats (e.g., BibTeX and etc) at the bottom of that page.

DOI

License

MIT