Awesome
Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning [CVPR'21, Oral]
By Zhicheng Huang*, Zhaoyang Zeng*, Yupan Huang*, Bei Liu, Dongmei Fu and Jianlong Fu
arxiv: https://arxiv.org/pdf/2104.03135.pdf
Introduction
This is the official implementation of the paper. In this paper, we propose SOHO to "See Out of tHe bOx" that takes a whole image as input, and learns vision-language representation in an end-to-end manner. SOHO does not require bounding box annotations which enables inference 10 times faster than region-based approaches.
Architecture
Release Progress
-
VQA Codebase
-
Pre-training Codebase
Installation
conda create -n soho python=3.7
conda activate soho
conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=11.1 -c pytorch -c conda-forge
git clone https://github.com/NVIDIA/apex.git
cd apex
python setup.py install --cuda_ext --cpp_ext
cd ../ && rm -rf apex
git clone https://github.com/researchmm/soho.git
cd $SOHO_ROOT
python setup.py develop
Getting Started
-
Download the training, validation and test data
# download Pre-traning dataset mkdir -p $SOHO_ROOT/data/vg_coco_pre cd $SOHO_ROOT/data/vg_coco_pre wget http://images.cocodataset.org/zips/train2014.zip wget http://images.cocodataset.org/zips/val2014.zip #download vg dataset wget https://cs.stanford.edu/people/rak248/VG_100K_2/images.zip wget https://cs.stanford.edu/people/rak248/VG_100K_2/images2.zip unzip images.zip unzip images2.zip rm -rf images.zip images2.zip mv VG_100K_2/*.jpg VG_100K/ cd VG_100K zip -r images.zip . mv images.zip ../ cd .. rm -rf VG_100K* wget https://sohose.s3.ap-southeast-1.amazonaws.com/data/pretraining/coco_cap_train_pre.json wget https://sohose.s3.ap-southeast-1.amazonaws.com/data/pretraining/coco_cap_val_pre.json wget https://sohose.s3.ap-southeast-1.amazonaws.com/data/pretraining/vg_cap_pre.json mkdir -p $SOHO_ROOT/data/coco cd $SOHO_ROOT/data/coco # download VQA dataset wget http://images.cocodataset.org/zips/train2014.zip wget http://images.cocodataset.org/zips/val2014.zip wget http://images.cocodataset.org/zips/test2015.zip wget https://sohose.s3.ap-southeast-1.amazonaws.com/data/vqa/train_data_vqa.json wget https://sohose.s3.ap-southeast-1.amazonaws.com/data/vqa/val_data_vqa.json wget https://sohose.s3.ap-southeast-1.amazonaws.com/data/vqa/test_data_vqa.json
-
Train the Pre-training models
cd $SOHO_ROOT # use 8 GPUS to train the model bash tools/dist_train.sh configs/Pretrain/soho_res18_pre.py 8 # you also can download the pre-trained models mkdir -p $SOHO_ROOT/work_dirs/pretrained cd $SOHO_ROOT/work_dirs/pretrained # download pre-training weight wget https://sohose.s3.ap-southeast-1.amazonaws.com/checkpoint/soho_res18_fp16_40-9441cdd3.pth
-
Training a VQA model
cd $SOHO_ROOT # use 8 GPUS to train the model bash tools/dist_train.sh configs/VQA/soho_res18_vqa.py 8
-
Evaluate a VQA model
# test 18 epoch with 8GPUs bash tools/dist_test_vqa.sh configs/VQA/soho_res18_vqa.py 18 8
Citation
If you find this repo useful in your research, please consider citing the following papers:
@inproceedings{huang2021seeing,
title={Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning},
author={Huang, Zhicheng and Zeng, Zhaoyang and Huang, Yupan and Liu, Bei and Fu, Dongmei and Fu, Jianlong},
booktitle={The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2021}
}
@article{huang2020pixel,
title={Pixel-bert: Aligning image pixels with text by deep multi-modal transformers},
author={Huang, Zhicheng and Zeng, Zhaoyang and Liu, Bei and Fu, Dongmei and Fu, Jianlong},
journal={arXiv preprint arXiv:2004.00849},
year={2020}
}
Acknowledgements
We would like to thank mmcv and mmdetection. Our commons lib is based on mmcv.