Home

Awesome

A Topological Filter for Learning with Label Noise (NeurIPS 2020, Paper)

Requirements

Usage

python train.py --every 5 --start_clean 30 --k_cc 4 --k_outlier 32 --seed 77 --type uniform --noise 0.4 --patience 65 --gpus 0 --dataset cifar10 --zeta 0.5
python train.py --gpus 2 --every 5 --start_clean 10 --k_outlier 30 --k_cc 100 --noise 0.8 --type uniform --patience 60 --seed 77 --dataset pc --net pc --milestone 35 --zeta 2

Here the major parameters are:

Practical tips: For the extrmely noisy scenarios (noise level >= 0.8), we observe setting a larger k_cc is better.

Our code will be further improved to make it cleaner and easier to use.

Reference:

@inproceedings{wu2020topological,
  title={A Topological Filter for Learning with Label Noise},
  author={Wu, Pengxiang and Zheng, Songzhu and Goswami, Mayank and Metaxas, Dimitris and Chen, Chao},
  booktitle={Advances in Neural Information Processing Systems},
  year={2020}
}

Related Works: