Awesome
AdaCorr
This is the code for the paper:
<a> Error-Bounded Correction of Noisy Labels </a> <br> Songzhu Zheng, Pengxiang Wu, Aman Goswami, Mayank Goswami, Dimitris Metaxas, Chao Chen </br> Paper Link Presented at ICML 2020
If you find this code useful in your research please cite:
@inproceedings{songzhu2020_LRT,
title={Error-Bounded Correction of Noisy Labels},
author={Songzhu Zheng, Pengxiang Wu, Aman Goswami, Mayank Goswami, Dimitris Metaxas, Chao Chen},
booktitle={ICML},
year={2020}
}
Introduction
AdaCorr is an algorithm that is designed to perform robustly when label noise is presented in your training data. This algorithm will try to correct mislabeled data points during training process relying on current network's confidence.
Specifically, for each input data point
- (1) Likelihood ratio test (LRT) is performed to test the correctness of its current label. If the label is rejected by the test, the algorithm will set the new label to be the current MLE.
- (2) Network will keep trainning using the new labels, which refines the power of the test
Steps (1) and (2) are conducted iteratively until the learning procedure converges.
Environment Setting
The environment setup for AdaCorr is listed in environment.yml. To install, run:
conda env create -f environment.yml
source activate torch1.6
Running AdaCorr
There are several command-line flags that you can use to configure the input/output and hyperparameters to be applied by AdaCorr.
python LRTcorrect.py
[--dataset]
[--network]
[--noise_type]
[--noise_level]
[--lr]
[--n_epochs]
[--epoch_start]
[--epoch_update]
[--epoch_interval]
[--every_n_epoch]
[--two_stage]
[--gpu]
[--n_gpus]
[--seed]
--dataset : The dataset to be used in the experiment. Current version supports mnist/cifar10/cifar100/pc. The default is mnist.
--network : The network architecture to be used as the backbone. Available options are cnn/resnet18/resnet34/preact_resnet18/preact_resnet34/preact_resnet101/pc. The default is preact_resnet34.
--noise_type : Choose noise type to be applied to data's labels. Options are uniform/asymmetric.
--noise_level : Set the noise level. Must be in the range [0, 1].
--lr : Learning Rate. The default is 1e-3.
--n_epochs : Number of epochs to train.
--epoch_start : The epoch that retroactive loss is introduced.
--epoch_update : The epoch that start to perform correction.
--epoch_interval : Interval between the update of retroactive loss.
--every_n_epoch : Sliding window for calculating network confidence.
--two_stage : Use two stage training. Retrain the network from scratch using corrected labels. Default is 0. Two enable this feature set it to be 1.
--gpu : The index of GPU to be used. The default is 0. If torch.cuda.is_available() is false the CPU will be used.
--n_gpus : Number of GPUS to be used. The default is 1.
--seed : Set the random seeds for your experiment.
For example, to run AdaCorr on CIFAR10 with 20% uniform noisy level with <img src="https://render.githubusercontent.com/render/math?math=L_{ce}"> introduced at epoch 25 and correction starting at 30, you could run:
python LRTcorrect.py --dataset cifar10 --network preact_resnet34 --noise_type uniform --noise_level 0.2 --n_epochs 180 --epoch_start 25 --epoch_update 30
Current version doesn't support user-customized dataset. If you wish to use AdaCorr on your own dataset, your need to write your own data loader and replace the one used in LRTcorrect.py. If you have any question, please contact imzszhahahaha@gmail.com for the issue of implementation.
Parameter Setting for Experiment Results
The hyper-parameter setting used to reproduce the result in the paper is presented in Experiment_Log folder. You can simply run these bash file to view the results. All commands is in following format:
python -W ignore LRTcorrect.py --dataset mnist --network preact_resnet34 --noise_type uniform --noise_level 0.2 --lr 1e-3 --epoch_start 10 --epoch_update 15 --n_epochs 180 --n_gpus 1 --gpu 0
MNIST - Uniform Noise
python -W ignore LRTcorrect.py --dataset mnist --network preact_resnet34 --noise_type uniform --noise_level 0.2 --lr 1e-3 --epoch_start 10 --epoch_update 15 --n_epochs 180 --n_gpus 1 --gpu 0
python -W ignore LRTcorrect.py --dataset mnist --network preact_resnet34 --noise_type uniform --noise_level 0.4 --lr 1e-3 --epoch_start 10 --epoch_update 15 --n_epochs 180 --n_gpus 1 --gpu 0
python -W ignore LRTcorrect.py --dataset mnist --network preact_resnet34 --noise_type uniform --noise_level 0.6 --lr 1e-3 --epoch_start 10 --epoch_update 15 --n_epochs 180 --n_gpus 1 --gpu 0
python -W ignore LRTcorrect.py --dataset mnist --network preact_resnet34 --noise_type uniform --noise_level 0.8 --lr 1e-3 --epoch_start 5 --epoch_update 10 --n_epochs 180 --n_gpus 1 --gpu 0
CIFAR10 - Uniform Noise
python -W ignore LRTcorrect.py --dataset cifar10 --network preact_resnet34 --noise_type uniform --noise_level 0.2 --lr 1e-3 --n_epochs 180 --epoch_start 25 --epoch_update 30 --gpu 0 --n_gpus 1
python -W ignore LRTcorrect.py --dataset cifar10 --network preact_resnet34 --noise_type uniform --noise_level 0.4 --lr 1e-3 --n_epochs 180 --epoch_start 25 --epoch_update 30 --gpu 0 --n_gpus 1
python -W ignore LRTcorrect.py --dataset cifar10 --network preact_resnet34 --noise_type uniform --noise_level 0.6 --lr 1e-3 --n_epochs 180 --epoch_start 25 --epoch_update 30 --gpu 0 --n_gpus 1
python -W ignore LRTcorrect.py --dataset cifar10 --network preact_resnet34 --noise_type uniform --noise_level 0.8 --lr 1e-3 --n_epochs 180 --epoch_start 20 --epoch_update 25 --gpu 0 --n_gpus 1
CIFAR100 - Uniform Noise
python -W ignore LRTcorrect.py --dataset cifar100 --network preact_resnet34 --n_epochs 180 --lr 1e-3 --noise_type uniform --noise_level 0.2 --epoch_start 25 --epoch_update 30 --gpu 0 --n_gpus 1
python -W ignore LRTcorrect.py --dataset cifar100 --network preact_resnet34 --n_epochs 180 --lr 1e-3 --noise_type uniform --noise_level 0.4 --epoch_start 25 --epoch_update 30 --gpu 0 --n_gpus 1
python -W ignore LRTcorrect.py --dataset cifar100 --network preact_resnet34 --n_epochs 180 --lr 1e-3 --noise_type uniform --noise_level 0.6 --epoch_start 25 --epoch_update 30 --gpu 0 --n_gpus 1
python -W ignore LRTcorrect.py --dataset cifar100 --network preact_resnet34 --n_epochs 180 --lr 1e-3 --noise_type uniform --noise_level 0.8 --epoch_start 30 --epoch_update 35 --gpu 0 --n_gpus 1
Point Cloud - Uniform Noise
python -W ignore LRTcorrect.py --dataset pc --network pc --n_epochs 180 --lr 2e-3 --noise_type uniform --noise_level 0.2 --epoch_start 10 --epoch_update 15 --n_gpus 1 --gpu 0
python -W ignore LRTcorrect.py --dataset pc --network pc --n_epochs 180 --lr 2e-3 --noise_type uniform --noise_level 0.4 --epoch_start 10 --epoch_update 15 --n_gpus 1 --gpu 0
python -W ignore LRTcorrect.py --dataset pc --network pc --n_epochs 180 --lr 2e-3 --noise_type uniform --noise_level 0.6 --epoch_start 10 --epoch_update 15 --n_gpus 1 --gpu 0
python -W ignore LRTcorrect.py --dataset pc --network pc --n_epochs 180 --lr 2e-3 --noise_type uniform --noise_level 0.8 --epoch_start 10 --epoch_update 15 --n_gpus 1 --gpu 0
MNIST - Asymmetric Noise
python -W ignore LRTcorrect.py --dataset mnist --network preact_resnet34 --n_epochs 180 --lr 1e-3 --noise_type asymmetric --noise_level 0.2 --epoch_start 5 --epoch_update 10 --n_gpus 1 --gpu 0
python -W ignore LRTcorrect.py --dataset mnist --network preact_resnet34 --n_epochs 180 --lr 1e-3 --noise_type asymmetric --noise_level 0.3 --epoch_start 5 --epoch_update 10 --n_gpus 1 --gpu 0
python -W ignore LRTcorrect.py --dataset mnist --network preact_resnet34 --n_epochs 180 --lr 1e-3 --noise_type asymmetric --noise_level 0.4 --epoch_start 5 --epoch_update 10 --n_gpus 1 --gpu 0
CIFAR10 - Asymmetric Noise
python -W ignore LRTcorrect.py --dataset cifar10 --network preact_resnet34 --n_epochs 180 --lr 1e-3 --noise_type asymmetric --noise_level 0.2 --epoch_start 20 --epoch_update 25 --n_gpus 1 --gpu 0
python -W ignore LRTcorrect.py --dataset cifar10 --network preact_resnet34 --n_epochs 180 --lr 1e-3 --noise_type asymmetric --noise_level 0.3 --epoch_start 20 --epoch_update 25 --n_gpus 1 --gpu 0
python -W ignore LRTcorrect.py --dataset cifar10 --network preact_resnet34 --n_epochs 180 --lr 1e-3 --noise_type asymmetric --noise_level 0.4 --epoch_start 20 --epoch_update 25 --n_gpus 1 --gpu 0
CIFAR100 - Asymmetric Noise
python -W ignore LRTcorrect.py --dataset cifar100 --network preact_resnet34 --n_epochs 180 --lr 1e-3 --noise_type asymmetric --noise_level 0.2 --epoch_start 25 --epoch_update 30 --n_gpus 1 --gpu 0
python -W ignore LRTcorrect.py --dataset cifar100 --network preact_resnet34 --n_epochs 180 --lr 1e-3 --noise_type asymmetric --noise_level 0.3 --epoch_start 25 --epoch_update 30 --n_gpus 1 --gpu 0
python -W ignore LRTcorrect.py --dataset cifar100 --network preact_resnet34 --n_epochs 180 --lr 1e-3 --noise_type asymmetric --noise_level 0.4 --epoch_start 25 --epoch_update 30 --n_gpus 1 --gpu 0
Point Cloud - Asymmetric Noise
python -W ignore LRTcorrect.py --dataset pc --network pc --noise_type asymmetric --lr 2e-3 --noise_level 0.2 --n_epochs 180 --epoch_start 10 --epoch_update 15 --n_gpus 1 --gpu 0
python -W ignore LRTcorrect.py --dataset pc --network pc --noise_type asymmetric --lr 2.5e-3 --noise_level 0.3 --n_epochs 180 --epoch_start 10 --epoch_update 15 --n_gpus 1 --gpu 0
python -W ignore LRTcorrect.py --dataset pc --network pc --noise_type asymmetric --lr 2.5e-3 --noise_level 0.4 --n_epochs 180 --epoch_start 10 --epoch_update 15 --n_gpus 1 --gpu 0
Performance
Algorithm