Home

Awesome

An Adaptive Radix Tree Implementation in Go

Coverage Status Go Report Card GoDoc

This library provides a Go implementation of the Adaptive Radix Tree (ART).

Features:

Usage

The Go playground

package main

import (
	"fmt"
	art "github.com/plar/go-adaptive-radix-tree/v2"
)

func main() {
	// Initialize a new Adaptive Radix Tree
	tree := art.New()

	// Insert key-value pairs into the tree
	tree.Insert(art.Key("apple"), "A sweet red fruit")
	tree.Insert(art.Key("banana"), "A long yellow fruit")
	tree.Insert(art.Key("cherry"), "A small red fruit")
	tree.Insert(art.Key("date"), "A sweet brown fruit")

	// Search for a value by key
	if value, found := tree.Search(art.Key("banana")); found {
		fmt.Println("Found:", value)
	} else {
		fmt.Println("Key not found")
	}

	// Iterate over the tree in ascending order
	fmt.Println("\nAscending order iteration:")
	tree.ForEach(func(node art.Node) bool {
		fmt.Printf("Key: %s, Value: %s\n", node.Key(), node.Value())
		return true
	})

	// Iterate over the tree in descending order using reverse traversal
	fmt.Println("\nDescending order iteration:")
	tree.ForEach(func(node art.Node) bool {
		fmt.Printf("Key: %s, Value: %s\n", node.Key(), node.Value())
		return true
	}, art.TraverseReverse)

	// Iterate over keys with a specific prefix
	fmt.Println("\nIteration with prefix 'c':")
	tree.ForEachPrefix(art.Key("c"), func(node art.Node) bool {
		fmt.Printf("Key: %s, Value: %s\n", node.Key(), node.Value())
		return true
	})
}

// Expected Output:
// Found: A long yellow fruit
//
// Ascending order iteration:
// Key: apple, Value: A sweet red fruit
// Key: banana, Value: A long yellow fruit
// Key: cherry, Value: A small red fruit
// Key: date, Value: A sweet brown fruit
//
// Descending order iteration:
// Key: date, Value: A sweet brown fruit
// Key: cherry, Value: A small red fruit
// Key: banana, Value: A long yellow fruit
// Key: apple, Value: A sweet red fruit
//
// Iteration with prefix 'c':
// Key: cherry, Value: A small red fruit

Documentation

Check out the documentation on pkg.go.dev/github.com/plar/go-adaptive-radix-tree/v2.

Migration from v1 to v2

from `art "github.com/plar/go-adaptive-radix-tree"`
  to `art "github.com/plar/go-adaptive-radix-tree/v2"`
$ go get github.com/plar/go-adaptive-radix-tree/v2
$ go mod tidy

If you had implemented your own version of the Tree interface, then you need to update the following method to support options. These are the only changes in the interface.

	ForEachPrefix(keyPrefix Key, callback Callback, options ...int)

Performance

plar/go-adaptive-radix-tree outperforms kellydunn/go-art by avoiding memory allocations during search operations. It also provides prefix based and reverse iteration over the tree.

Benchmarks were performed on datasets extracted from different projects:

go-adaptive-radix-tree#Average timeBytes per operationAllocs per operation
Tree Insert Words9117,888,698 ns/op37,942,744 B/op1,214,541 allocs/op
Tree Search Words2644,555,608 ns/op0 B/op0 allocs/op
Tree Insert UUIDs1859,360,135 ns/op18,375,723 B/op485,057 allocs/op
Tree Search UUIDs5421,265,931 ns/op0 B/op0 allocs/op
go-art
Tree Insert Words5272,047,975 ns/op81,628,987 B/op2,547,316 allocs/op
Tree Search Words10129,011,177 ns/op13,272,278 B/op1,659,033 allocs/op
Tree Insert UUIDs10140,309,246 ns/op33,678,160 B/op874,561 allocs/op
Tree Search UUIDs2082,120,943 ns/op3,883,131 B/op485,391 allocs/op

To see more benchmarks just run

$ ./make qa/benchmarks

References

[1] The Adaptive Radix Tree: ARTful Indexing for Main-Memory Databases (Specification)

[2] C99 implementation of the Adaptive Radix Tree

[3] Another Adaptive Radix Tree implementation in Go

[4] HSK Words. HSK(Hanyu Shuiping Kaoshi) - Standardized test of Standard Mandarin Chinese proficiency.