Awesome
GANs with spectral normalization and projection discriminator
NOTE: The setup and example code in this README are for training GANs on single GPU. The models are smaller than the ones used in the papers. Please go to link if you are looking for how to reproduce the results in the papers.
<img src="https://github.com/pfnet-research/sngan_projection/blob/master/demo/dog_and_cat_1x1_long.gif" width="128">Official Chainer implementation for conditional image generation on ILSVRC2012 dataset (ImageNet) with spectral normalization and projection discrimiantor.
Demo movies
Consecutive category morphing movies:
- (5x5 panels 128px images) https://www.youtube.com/watch?v=q3yy5Fxs7Lc
- (10x10 panels 128px images) https://www.youtube.com/watch?v=83D_3WXpPjQ
Other materials
- Generated images
- Pretrained models
- Movies
- 4 corners category morph.
<img src="https://github.com/pfnet-research/sngan_projection/blob/master/demo/interpolated_images_24.png" width="432"> <img src="https://github.com/pfnet-research/sngan_projection/blob/master/demo/interpolated_images_3x3.png" width="432">
References
- Takeru Miyato, Toshiki Kataoka, Masanori Koyama, Yuichi Yoshida. Spectral Normalization for Generative Adversarial Networks. ICLR2018. OpenReview
- Takeru Miyato, Masanori Koyama. cGANs with Projection Discriminator. ICLR2018. OpenReview
Setup
Install required python libraries:
pip install -r requirements.txt
Download ImageNet dataset:
Please download ILSVRC2012 dataset from http://image-net.org/download-images
Preprocess dataset:
cd datasets
IMAGENET_TRAIN_DIR=/path/to/imagenet/train/ # path to the parent directory of category directories named "n0*******".
PREPROCESSED_DATA_DIR=/path/to/save_dir/
bash preprocess.sh $IMAGENET_TRAIN_DIR $PREPROCESSED_DATA_DIR
# Make the list of image-label pairs for all images (1000 categories, 1281167 images).
python imagenet.py $PREPROCESSED_DATA_DIR
# Make the list of image-label pairs for dog and cat images (143 categories, 180373 images).
python imagenet_dog_and_cat.py $PREPROCESSED_DATA_DIR
Download inception model:
python source/inception/download.py --outfile=datasets/inception_model
Training examples
Spectral normalization + projection discriminator for 64x64 dog and cat images:
LOGDIR=/path/to/logdir
CONFIG=configs/sn_projection_dog_and_cat_64.yml
python train.py --config=$CONFIG --results_dir=$LOGDIR --data_dir=$PREPROCESSED_DATA_DIR
- pretrained model
- generated images at 250K iterations
- Examples of 64x64 generated images: <img src="https://github.com/pfnet-research/sngan_projection/blob/master/demo/images_dog_and_cat_64.jpg">
Spectral normalization + projection discriminator for 64x64 all ImageNet images:
LOGDIR=/path/to/logdir
CONFIG=configs/sn_projection_64.yml
python train.py --config=$CONFIG --results_dir=$LOGDIR --data_dir=$PREPROCESSED_DATA_DIR
Evaluation examples
(If you want to use pretrained models for the image generation, please download the model from link and set the snapshot
argument to the path to the downloaded pretrained model file (.npz).)
Generate images
python evaluations/gen_images.py --config=$CONFIG --snapshot=${LOGDIR}/ResNetGenerator_<iterations>.npz --results_dir=${LOGDIR}/gen_images
Generate category morphing images
Regarding the index-category correspondence, please see 1K ImageNet or 143 dog and cat ImageNet.
python evaluations/gen_interpolated_images.py --n_zs=10 --n_intp=10 --classes $CATEGORY1 $CATEGORY2 --config=$CONFIG --snapshot=${LOGDIR}/ResNetGenerator_<iterations>.npz --results_dir=${LOGDIR}/gen_morphing_images
Calculate inception score (with the original OpenAI implementation)
python evaluations/calc_inception_score.py --config=$CONFIG --snapshot=${LOGDIR}/ResNetGenerator_<iterations>.npz --results_dir=${LOGDIR}/inception_score --splits=10 --tf