Awesome
KD-GAN
Introduction
Title: "Knowledge-Driven Generative Adversarial Network for Text-to-Image Synthesis"
How to use
Python
- Python2.7
- Pytorch0.4 (
conda install pytorch=0.4.1 cuda90 torchvision=0.2.1 -c pytorch
) - tensorflow (
pip install --ignore-installed --upgrade https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.12.0-cp27-none-linux_x86_64.whl
) pip install easydict pathlib
conda install requests nltk pandas scikit-image pyyaml cudatoolkit=9.0
Data
-
Download the birds image data. Extract them to
data/birds/
cd data/birds
wget http://www.vision.caltech.edu/visipedia-data/CUB-200-2011/CUB_200_2011.tgz
tar -xvzf CUB_200_2011.tgz
-
Download coco dataset and extract the images to
data/coco/
cd data/coco
wget http://images.cocodataset.org/zips/train2014.zip
wget http://images.cocodataset.org/zips/val2014.zip
unzip train2014.zip
unzip val2014.zip
mv train2014 images
cp val2014/* images
Pretrained Models
- IS for bird
python google_drive.py 0B3y_msrWZaXLMzNMNWhWdW0zVWs eval/IS/bird/inception_finetuned_models.zip
- FID for bird
python google_drive.py 1747il5vnY2zNkmQ1x_8hySx537ZAJEtj eval/FID/bird_val.npz
- FID for coco
python google_drive.py 10NYi4XU3_bLjPEAg5KQal-l8A_d8lnL5 eval/FID/coco_val.npz
Training
- go into
code/
folder - bird:
python main.py --cfg cfg/bird_KDGAN.yml --gpu 0,1
- coco:
python main.py --cfg cfg/coco_KDGAN.yml --gpu 0,1
Validation
- Images generation:
- go into
code/
folder python main.py --cfg cfg/eval_bird.yml --gpu 0
python main.py --cfg cfg/eval_coco.yml --gpu 0
- go into
- Inception score:
- go into
eval/IS/bird
folder python inception_score_bird.py --image_folder ../../../models/bird_KDGAN_hard
- or go into
eval/IS/coco
folder python inception_score_coco.py ../../../models/coco_KDGAN_hard
- go into
- FID:
- go into
eval/FID/
folder python fid_score.py --gpu 0 --batch-size 50 --path1 bird_val.npz --path2 ../../models/bird_KDGAN_hard
python fid_score.py --gpu 0 --batch-size 50 --path1 coco_val.npz --path2 ../../models/coco_KDGAN_hard
- go into
Reference
DM-GAN: Dynamic Memory Generative Adversarial Networks for Text-to-Image Synthesis [code]
License
This code is released under the MIT License (refer to the LICENSE file for details).