Awesome
DM-GAN: Dynamic Memory Generative Adversarial Networks for Text-to-Image Synthesis
Introduction
This project page provides pytorch code that implements the following CVPR2019 paper:
Title: "DM-GAN: Dynamic Memory Generative Adversarial Networks for Text-to-Image Synthesis"
Arxiv: https://arxiv.org/abs/1904.01310
How to use
Python
- Python2.7
- Pytorch0.4 (
conda install pytorch=0.4.1 cuda90 torchvision=0.2.1 -c pytorch
) - tensorflow (
pip install --ignore-installed --upgrade https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.12.0-cp27-none-linux_x86_64.whl
) pip install easydict pathlib
conda install requests nltk pandas scikit-image pyyaml cudatoolkit=9.0
Data
-
Download metadata for birds coco and save them to
data/
python google_drive.py 1O_LtUP9sch09QH3s_EBAgLEctBQ5JBSJ ./data/bird.zip
python google_drive.py 1rSnbIGNDGZeHlsUlLdahj0RJ9oo6lgH9 ./data/coco.zip
-
Download the birds image data. Extract them to
data/birds/
cd data/birds
wget http://www.vision.caltech.edu/visipedia-data/CUB-200-2011/CUB_200_2011.tgz
tar -xvzf CUB_200_2011.tgz
-
Download coco dataset and extract the images to
data/coco/
cd data/coco
wget http://images.cocodataset.org/zips/train2014.zip
wget http://images.cocodataset.org/zips/val2014.zip
unzip train2014.zip
unzip val2014.zip
mv train2014 images
cp val2014/* images
Pretrained Models
- DAMSM for bird. Download and save it to
DAMSMencoders/
python google_drive.py 1GNUKjVeyWYBJ8hEU-yrfYQpDOkxEyP3V DAMSMencoders/bird.zip
- DAMSM for coco. Download and save it to
DAMSMencoders/
python google_drive.py 1zIrXCE9F6yfbEJIbNP5-YrEe2pZcPSGJ DAMSMencoders/coco.zip
- DM-GAN for bird. Download and save it to
models
python google_drive.py 1BmDKqIyNY_7XWhXpxa2gm6TYxB2DQHS3 models/bird_DMGAN.pth
- DM-GAN for coco. Download and save it to
models
python google_drive.py 1tQ9CJNiLlRLBKSUKHXKYms2tbfzllyO- models/coco_DMGAN.pth
- IS for bird
python google_drive.py 0B3y_msrWZaXLMzNMNWhWdW0zVWs eval/IS/bird/inception_finetuned_models.zip
- FID for bird
python google_drive.py 1747il5vnY2zNkmQ1x_8hySx537ZAJEtj eval/FID/bird_val.npz
- FID for coco
python google_drive.py 10NYi4XU3_bLjPEAg5KQal-l8A_d8lnL5 eval/FID/coco_val.npz
Training
- go into
code/
folder - bird:
python main.py --cfg cfg/bird_DMGAN.yml --gpu 0
- coco:
python main.py --cfg cfg/coco_DMGAN.yml --gpu 0
Validation
- Images generation:
- go into
code/
folder python main.py --cfg cfg/eval_bird.yml --gpu 0
python main.py --cfg cfg/eval_coco.yml --gpu 0
- go into
- Inception score (IS for bird, IS for coco):
cd DM-GAN/eval/IS/bird && python inception_score_bird.py --image_folder ../../../models/bird_DMGAN
cd DM-GAN/eval/IS/coco && python inception_score_coco.py ../../../models/coco_DMGAN
- FID:
cd DM-GAN/eval/FID && python fid_score.py --gpu 0 --batch-size 50 --path1 bird_val.npz --path2 ../../models/bird_DMGAN
cd DM-GAN/eval/FID && python fid_score.py --gpu 0 --batch-size 50 --path1 coco_val.npz --path2 ../../models/coco_DMGAN
Performance
Note that after cleaning and refactoring the code of the paper, the results are slightly different. We use the Pytorch implementation to measure FID score. However, the official implementation (Tensorflow FID) gives different scores.
Model | R-precision↑ | IS↑ | Pytorch FID↓ | TF FID↓ |
---|---|---|---|---|
bird_AttnGAN (paper) | 67.82% ± 4.43% | 4.36 ± 0.03 | 23.98 | 14.01 |
bird_DMGAN (paper) | 72.31% ± 0.91% | 4.75 ± 0.07 | 16.09 | (-) |
bird_DMGAN (pretrained model) | 76.58% ± 0.53% | 4.71 ± 0.06 | 15.34 | 11.91 |
coco_AttnGAN (paper) | 85.47% ± 3.69% | 25.89 ± 0.47 | 35.49 | 29.53 |
coco_DMGAN (paper) | 88.56% ± 0.28% | 30.49 ± 0.57 | 32.64 | (-) |
coco_DMGAN (pretrained model) | 92.23% ± 0.37% | 32.43 ± 0.58 | 26.55 | 24.24 |
License
This code is released under the MIT License (refer to the LICENSE file for details).