Home

Awesome

Sequential prediction tasks for Adaptive Skip Intervals

This repository includes visual prediction tasks for the paper Adaptive Skip Intervals: Temporal Abstraction for Recurrent Dynamical Models

@inproceedings{neitz2018adaptive,
  title={Adaptive Skip Intervals: Temporal Abstraction for Recurrent Dynamical Models},
  author={Neitz, Alexander and Parascandolo, Giambattista and Bauer, Stefan and Sch{\"o}lkopf, Bernhard},
  booktitle={Advances in Neural Information Processing Systems (NIPS)},
  year={2018}
}

See repository adaptive-skip-intervals for an implementation of the ASI algorithm.

Currently implemented tasks are:

Dependencies

Generate datasets

Room runner:
python -m generate.generate_dataset --dataset rr --seed 1234 --n_trajectories 500 --output_dir /path/to/dataset/directory/

Funnel board:
python -m generate.generate_dataset --dataset fubo --seed 1234 --n_trajectories 500 --output_dir /path/to/dataset/directory/

Use --n_processes N to use N parallel workers (results in nondeterministic ordering of examples).