Awesome
Adaptive Skip Intervals - Experiments
This repository includes code to reproduce the results in the paper Adaptive Skip Intervals: Temporal Abstraction for Recurrent Dynamical Models.
@inproceedings{neitz2018adaptive,
title={Adaptive Skip Intervals: Temporal Abstraction for Recurrent Dynamical Models},
author={Neitz, Alexander and Parascandolo, Giambattista and Bauer, Stefan and Sch{\"o}lkopf, Bernhard},
booktitle={Advances in Neural Information Processing Systems (NIPS)},
year={2018}
}
The trained model in action: on the left is the ground truth, on the right we see the model's predictions. We synchronized the videos to better compare them. Note that the model skips hard-to-predict frames.
The skipping behavior can also be visualized using timelines. Lines between the frames visualize the frame similarity which is used in the temporal matching step of ASI.
Code to generate datasets is available in the separate repository: https://github.com/neitzal/asi-tasks
Dependencies
- imageio==2.1.2
- keras==2.1.3
- moviepy==0.2.3.2
- numpy==1.14.0
- pandas==0.22.0
- pillow==5.0.0
- pytest==3.4.0
- scikit-image==0.14.0
- scipy==1.0.0
- tensorflow==1.5.0
- tqdm==4.11.2
Training the ASI model
To train the ASI model, please run, for example
python -m experiment.run_experiment
--delta_t_upper_bound 21
--exploration_steps 15000
--optimizer adam
--schd_sampling_steps 15000
--f_init_learning_rate 0.0005
--f_learning_rate_decay_rate 0.2
--f_learning_rate_decay_steps 15000
--f_architecture f_simple
--n_kernels 48
--n_trajectories_per_batch 2
--z_loss_fn log_loss
--initializer he_uniform
--activation relu
--dataset fubo
--n_validation_examples 3
--train_filepath /path/to/train.tfrecords
--valid_filepath /path/to/valid.tfrecords
--n_epochs 150
--output_dir /path/to/training_output/