Home

Awesome

ONNX Runtime

<img alt="github" src="https://img.shields.io/badge/github-nbigaouette/onnxruntime_rs-8da0cb?style=for-the-badge&labelColor=555555&logo=github" height="20"> <img alt="crates.io" src="https://img.shields.io/crates/v/onnxruntime.svg?style=for-the-badge&color=fc8d62&logo=rust" height="20"> <img alt="docs.rs" src="https://img.shields.io/badge/docs.rs-onnxruntime-66c2a5?style=for-the-badge&labelColor=555555&logoColor=white&logo=" height="20"> <img alt="build status" src="https://img.shields.io/github/workflow/status/nbigaouette/onnxruntime-rs/Rust/master?style=for-the-badge" height="20"> codecov

This is an attempt at a Rust wrapper for Microsoft's ONNX Runtime (version 1.8).

This project consist on two crates:

Changelog

The build.rs script supports downloading pre-built versions of the Microsoft ONNX Runtime, which provides the following targets:

CPU:

GPU:


WARNING:


Setup

Three different strategy to obtain the ONNX Runtime are supported by the build.rs script:

  1. Download a pre-built binary from upstream;
  2. Point to a local version already installed;
  3. Compile from source (not yet implemented).

To select which strategy to use, set the ORT_STRATEGY environment variable to:

  1. download: This is the default if ORT_STRATEGY is not set;
  2. system: To use a locally installed version (use ORT_LIB_LOCATION environment variable to point to the install path)
  3. compile: To compile the library

The download strategy supports downloading a version of ONNX that supports CUDA. To use this, set the environment variable ORT_USE_CUDA=1 (only supports Linux or Windows).

Until the build script allow compilation of the runtime, see the compilation notes for some details on the process.

Note on 'ORT_STRATEGY=system'

When using ORT_STRATEGY=system, executing a built crate binary (for example the tests) might fail, at least on macOS, if the library is not installed in a system path. An error similar to the following happens:

dyld: Library not loaded: @rpath/libonnxruntime.1.7.1.dylib
  Referenced from: onnxruntime-rs.git/target/debug/deps/onnxruntime_sys-22eb0e3e89a0278c
  Reason: image not found

To fix, one can either:

See rust-lang/cargo #5077 for more information.

Example

The C++ example that uses the C API (C_Api_Sample.cpp) was ported to both the low level crate (onnxruntime-sys) and the high level on (onnxruntime).

onnxruntime-sys

To run this example (onnxruntime-sys/examples/c_api_sample.rs):

# Download the model (SqueezeNet 1.0, ONNX version: 1.3, Opset version: 8)
❯ curl -LO "https://github.com/onnx/models/raw/master/vision/classification/squeezenet/model/squeezenet1.0-8.onnx"
❯ cargo run --example c_api_sample
[...]
    Finished dev [unoptimized + debuginfo] target(s) in 1.88s
     Running `target/debug/examples/c_api_sample`
Using Onnxruntime C API
2020-08-09 09:37:41.554922 [I:onnxruntime:, inference_session.cc:174 ConstructorCommon] Creating and using per session threadpools since use_per_session_threads_ is true
2020-08-09 09:37:41.556650 [I:onnxruntime:, inference_session.cc:830 Initialize] Initializing session.
2020-08-09 09:37:41.556665 [I:onnxruntime:, inference_session.cc:848 Initialize] Adding default CPU execution provider.
2020-08-09 09:37:41.556678 [I:onnxruntime:test, bfc_arena.cc:15 BFCArena] Creating BFCArena for Cpu
2020-08-09 09:37:41.556687 [V:onnxruntime:test, bfc_arena.cc:32 BFCArena] Creating 21 bins of max chunk size 256 to 268435456
2020-08-09 09:37:41.558313 [I:onnxruntime:, reshape_fusion.cc:37 ApplyImpl] Total fused reshape node count: 0
2020-08-09 09:37:41.559327 [I:onnxruntime:, reshape_fusion.cc:37 ApplyImpl] Total fused reshape node count: 0
2020-08-09 09:37:41.559476 [I:onnxruntime:, reshape_fusion.cc:37 ApplyImpl] Total fused reshape node count: 0
2020-08-09 09:37:41.559607 [V:onnxruntime:, inference_session.cc:671 TransformGraph] Node placements
2020-08-09 09:37:41.559615 [V:onnxruntime:, inference_session.cc:673 TransformGraph] All nodes have been placed on [CPUExecutionProvider].
2020-08-09 09:37:41.559639 [I:onnxruntime:, session_state.cc:25 SetGraph] SaveMLValueNameIndexMapping
2020-08-09 09:37:41.559787 [I:onnxruntime:, session_state.cc:70 SetGraph] Done saving OrtValue mappings.
2020-08-09 09:37:41.560252 [I:onnxruntime:, session_state_initializer.cc:178 SaveInitializedTensors] Saving initialized tensors.
2020-08-09 09:37:41.563467 [I:onnxruntime:, session_state_initializer.cc:223 SaveInitializedTensors] Done saving initialized tensors
2020-08-09 09:37:41.563979 [I:onnxruntime:, inference_session.cc:919 Initialize] Session successfully initialized.
Number of inputs = 1
Input 0 : name=data_0
Input 0 : type=1
Input 0 : num_dims=4
Input 0 : dim 0=1
Input 0 : dim 1=3
Input 0 : dim 2=224
Input 0 : dim 3=224
2020-08-09 09:37:41.573127 [I:onnxruntime:, sequential_executor.cc:145 Execute] Begin execution
2020-08-09 09:37:41.573183 [I:onnxruntime:test, bfc_arena.cc:259 AllocateRawInternal] Extending BFCArena for Cpu. bin_num:13 rounded_bytes:3154176
2020-08-09 09:37:41.573197 [I:onnxruntime:test, bfc_arena.cc:143 Extend] Extended allocation by 4194304 bytes.
2020-08-09 09:37:41.573203 [I:onnxruntime:test, bfc_arena.cc:147 Extend] Total allocated bytes: 9137152
2020-08-09 09:37:41.573212 [I:onnxruntime:test, bfc_arena.cc:150 Extend] Allocated memory at 0x7fb7d6cb7000 to 0x7fb7d70b7000
2020-08-09 09:37:41.573248 [I:onnxruntime:test, bfc_arena.cc:259 AllocateRawInternal] Extending BFCArena for Cpu. bin_num:8 rounded_bytes:65536
2020-08-09 09:37:41.573256 [I:onnxruntime:test, bfc_arena.cc:143 Extend] Extended allocation by 4194304 bytes.
2020-08-09 09:37:41.573262 [I:onnxruntime:test, bfc_arena.cc:147 Extend] Total allocated bytes: 13331456
2020-08-09 09:37:41.573268 [I:onnxruntime:test, bfc_arena.cc:150 Extend] Allocated memory at 0x7fb7d70b7000 to 0x7fb7d74b7000
Score for class [0] =  0.000045440644
Score for class [1] =  0.0038458651
Score for class [2] =  0.00012494653
Score for class [3] =  0.0011804523
Score for class [4] =  0.0013169361
Done!

onnxruntime

To run this example (onnxruntime/examples/sample.rs):

# Download the model (SqueezeNet 1.0, ONNX version: 1.3, Opset version: 8)
❯ curl -LO "https://github.com/onnx/models/raw/master/vision/classification/squeezenet/model/squeezenet1.0-8.onnx"
❯ cargo run --example sample
[...]
    Finished dev [unoptimized + debuginfo] target(s) in 13.62s
     Running `target/debug/examples/sample`
Uninitialized environment found, initializing it with name "test".
2020-08-09 09:34:37.395577 [I:onnxruntime:, inference_session.cc:174 ConstructorCommon] Creating and using per session threadpools since use_per_session_threads_ is true
2020-08-09 09:34:37.399253 [I:onnxruntime:, inference_session.cc:830 Initialize] Initializing session.
2020-08-09 09:34:37.399284 [I:onnxruntime:, inference_session.cc:848 Initialize] Adding default CPU execution provider.
2020-08-09 09:34:37.399313 [I:onnxruntime:test, bfc_arena.cc:15 BFCArena] Creating BFCArena for Cpu
2020-08-09 09:34:37.399335 [V:onnxruntime:test, bfc_arena.cc:32 BFCArena] Creating 21 bins of max chunk size 256 to 268435456
2020-08-09 09:34:37.410516 [I:onnxruntime:, reshape_fusion.cc:37 ApplyImpl] Total fused reshape node count: 0
2020-08-09 09:34:37.417478 [I:onnxruntime:, reshape_fusion.cc:37 ApplyImpl] Total fused reshape node count: 0
2020-08-09 09:34:37.420131 [I:onnxruntime:, reshape_fusion.cc:37 ApplyImpl] Total fused reshape node count: 0
2020-08-09 09:34:37.422623 [V:onnxruntime:, inference_session.cc:671 TransformGraph] Node placements
2020-08-09 09:34:37.428863 [V:onnxruntime:, inference_session.cc:673 TransformGraph] All nodes have been placed on [CPUExecutionProvider].
2020-08-09 09:34:37.428954 [I:onnxruntime:, session_state.cc:25 SetGraph] SaveMLValueNameIndexMapping
2020-08-09 09:34:37.429079 [I:onnxruntime:, session_state.cc:70 SetGraph] Done saving OrtValue mappings.
2020-08-09 09:34:37.429925 [I:onnxruntime:, session_state_initializer.cc:178 SaveInitializedTensors] Saving initialized tensors.
2020-08-09 09:34:37.436300 [I:onnxruntime:, session_state_initializer.cc:223 SaveInitializedTensors] Done saving initialized tensors
2020-08-09 09:34:37.437255 [I:onnxruntime:, inference_session.cc:919 Initialize] Session successfully initialized.
Dropping the session options.
2020-08-09 09:34:37.448956 [I:onnxruntime:, sequential_executor.cc:145 Execute] Begin execution
2020-08-09 09:34:37.449041 [I:onnxruntime:test, bfc_arena.cc:259 AllocateRawInternal] Extending BFCArena for Cpu. bin_num:13 rounded_bytes:3154176
2020-08-09 09:34:37.449072 [I:onnxruntime:test, bfc_arena.cc:143 Extend] Extended allocation by 4194304 bytes.
2020-08-09 09:34:37.449087 [I:onnxruntime:test, bfc_arena.cc:147 Extend] Total allocated bytes: 9137152
2020-08-09 09:34:37.449104 [I:onnxruntime:test, bfc_arena.cc:150 Extend] Allocated memory at 0x7fb3b9585000 to 0x7fb3b9985000
2020-08-09 09:34:37.449176 [I:onnxruntime:test, bfc_arena.cc:259 AllocateRawInternal] Extending BFCArena for Cpu. bin_num:8 rounded_bytes:65536
2020-08-09 09:34:37.449196 [I:onnxruntime:test, bfc_arena.cc:143 Extend] Extended allocation by 4194304 bytes.
2020-08-09 09:34:37.449209 [I:onnxruntime:test, bfc_arena.cc:147 Extend] Total allocated bytes: 13331456
2020-08-09 09:34:37.449222 [I:onnxruntime:test, bfc_arena.cc:150 Extend] Allocated memory at 0x7fb3b9985000 to 0x7fb3b9d85000
Dropping Tensor.
Score for class [0] =  0.000045440578
Score for class [1] =  0.0038458686
Score for class [2] =  0.0001249467
Score for class [3] =  0.0011804511
Score for class [4] =  0.00131694
Dropping TensorFromOrt.
Dropping the session.
Dropping the memory information.
Dropping the environment.

See also the integration tests (onnxruntime/tests/integration_tests.rs) that performs simple model download and inference, validating the results.

Bindings Generation

Bindings (the basis of onnxruntime-sys) are committed to the git repository. This means bindgen is not a dependency anymore on every build (it was made optional) and thus build times are better.

To generate new bindings (for example if they don't exists for your platform or if a version bump occurred), build the crate with the generate-bindings feature.

NOTE: Make sure to have the rustfmt rustup component present so that bindings are formatted:

rustup component add rustfmt

Then on each platform build with the proper feature flag:

❯ cd onnxruntime-sys
❯ cargo build --features generate-bindings

Generating Bindings for Linux With Docker

Prepare the container:

❯ docker run -it --rm --name rustbuilder -v "$PWD":/usr/src/myapp -w /usr/src/myapp rust:1.50.0 /bin/bash
❯ apt-get update
❯ apt-get install clang
❯ rustup component add rustfmt

Generate the bindings:

❯ docker exec -it --user "$(id -u)":"$(id -g)" rustbuilder /bin/bash
❯ cd onnxruntime-sys
❯ cargo build --features generate-bindings

Generating Bindings for Windows With Vagrant

You can use nbigaouette/windows_vagrant_rust to provision a Windows VM that can build the project and generate the bindings.

Windows can build both x86 and x86_64 bindings:

❯ rustup target add i686-pc-windows-msvc x86_64-pc-windows-msvc
❯ cd onnxruntime-sys
❯ cargo build --features generate-bindings --target i686-pc-windows-msvc
❯ cargo build --features generate-bindings --target x86_64-pc-windows-msvc

Conduct

The Rust Code of Conduct shall be respected. For escalation or moderation issues please contact Nicolas (nbigaouette@gmail.com) instead of the Rust moderation team.

License

This project is licensed under either of

at your option.