Awesome
ControlGAN
Pytorch implementation for Controllable Text-to-Image Generation. The goal is to generate images from text, and also allow the user to manipulate synthetic images using natural language descriptions, in one framework.
Overview
<img src="archi.jpg" width="900px" height="404px"/>Controllable Text-to-Image Generation.
Bowen Li, Xiaojuan Qi, Thomas Lukasiewicz, Philip H. S. Torr.<br> University of Oxford <br> In Neural Information Processing Systems, 2019. <br>
Data
- Download the preprocessed metadata for bird and coco, and save both into
data/
- Download bird dataset and extract the images to
data/birds/
- Download coco dataset and extract the images to
data/coco/
Training
All code was developed and tested on CentOS 7 with Python 3.7 (Anaconda) and PyTorch 1.1.
DAMSM model includes text encoder and image encoder
- Pre-train DAMSM model for bird dataset:
python pretrain_DAMSM.py --cfg cfg/DAMSM/bird.yml --gpu 0
- Pre-train DAMSM model for coco dataset:
python pretrain_DAMSM.py --cfg cfg/DAMSM/coco.yml --gpu 1
ControlGAN model
- Train ControlGAN model for bird dataset:
python main.py --cfg cfg/train_bird.yml --gpu 2
- Train ControlGAN model for coco dataset:
python main.py --cfg cfg/train_coco.yml --gpu 3
*.yml
files include configuration for training and testing.
Pretrained DAMSM Model
- DAMSM for bird. Download and save it to
DAMSMencoders/
- DAMSM for coco. Download and save it to
DAMSMencoders/
Pretrained ControlGAN Model
- ControlGAN for bird. Download and save it to
models/
Testing
- Test ControlGAN model for bird dataset:
python main.py --cfg cfg/eval_bird.yml --gpu 4
- Test ControlGAN model for coco dataset:
python main.py --cfg cfg/eval_coco.yml --gpu 5
Evaluation
- To generate images for all captions in the testing dataset, change B_VALIDATION to
True
in the eval_*.yml. - Inception Score for bird dataset: StackGAN-inception-model.
- Inception Score for coco dataset: improved-gan/inception_score.
Code Structure
- code/main.py: the entry point for training and testing.
- code/trainer.py: creates the main networks, harnesses and reports the progress of training.
- code/model.py: defines the architecture of ControlGAN.
- code/attention.py: defines the spatial and channel-wise attentions.
- code/VGGFeatureLoss.py: defines the architecture of the VGG-16.
- code/datasets.py: defines the class for loading images and captions.
- code/pretrain_DAMSM.py: creates the text and image encoders, harnesses and reports the progress of training.
- code/miscc/losses.py: defines and computes the losses.
- code/miscc/config.py: creates the option list.
- code/miscc/utils.py: additional functions.
Citation
If you find this useful for your research, please use the following.
@article{li2019control,
title={Controllable text-to-image generation},
author={Li, Bowen and Qi, Xiaojuan and Lukasiewicz, Thomas and H.~S.~Torr, Philip},
journal={arXiv preprint arXiv:1909.07083},
year={2019}
}
Acknowledgements
This code borrows heavily from AttnGAN repository. Many thanks.