Home

Awesome

<h1 align="center">🪄SCEPTER</h1> <p align="center"> <img src="https://img.shields.io/badge/python-%E2%89%A53.8-5be.svg"> <img src="https://img.shields.io/badge/pytorch-%E2%89%A51.12%20%7C%20%E2%89%A52.0-orange.svg"> <a href="https://pypi.org/project/scepter/"><img src="https://badge.fury.io/py/scepter.svg"></a> <a href="https://github.com/modelscope/scepter/blob/main/LICENSE"><img src="https://img.shields.io/github/license/modelscope/scepter"></a> <a href="https://github.com/modelscope/scepter/"><img src="https://img.shields.io/badge/scepter-Build from source-6FEBB9.svg"></a> </p>

🪄SCEPTER is an open-source code repository dedicated to generative training, fine-tuning, and inference, encompassing a suite of downstream tasks such as image generation, transfer, editing. SCEPTER integrates popular community-driven implementations as well as proprietary methods by Tongyi Lab of Alibaba Group, offering a comprehensive toolkit for researchers and practitioners in the field of AIGC. This versatile library is designed to facilitate innovation and accelerate development in the rapidly evolving domain of generative models.

SCEPTER offers 3 core components:

🎉 News

🖼 Gallery for Recent Works

ACE

ACE is a unified foundational model framework that supports a wide range of visual generation tasks. By defining CU for unifying multi-modal inputs across different tasks and incorporating long-context CU, we introduce historical contextual information into visual generation tasks, paving the way for ChatGPT-like dialog systems in visual generation.

Watch the demo

ACE Training

We offer a demonstration training YAML that enables the end-to-end training of ACE using a toy dataset. For a comprehensive overview of the hyperparameter configurations, please consult scepter/methods/edit/dit_ace_0.6b_512.yaml.

Prepare datasets

Please find the dataset class located in scepter/modules/data/dataset/ms_dataset.py, designed to facilitate end-to-end training using an open-source toy dataset. Download a dataset zip file from modelscope, and then extract its contents into the cache/datasets/ directory.

Should you wish to prepare your own datasets, we recommend consulting scepter/modules/data/dataset/ms_dataset.py for detailed guidance on the required data format.

Prepare initial weight

The ACE checkpoint has been uploaded to both ModelScope and HuggingFace platforms:

In the provided training YAML configuration, we have designated the Modelscope URL as the default checkpoint URL. Should you wish to transition to Hugging Face, you can effortlessly achieve this by modifying the PRETRAINED_MODEL value within the YAML file (replace the prefix "ms://iic" to "hf://scepter-studio").

Start training

You can easily start training procedure by executing the following command:

PYTHONPATH=. python scepter/tools/run_train.py --cfg scepter/methods/edit/dit_ace_0.6b_512.yaml

ACE Chat Bot

We have developed a chatbot interface utilizing Gradio, designed to convert user input in natural language into visually captivating images that align semantically with the specified instructions. You can easily access this functionality by launching Scepter Studio with the following command:

PYTHONPATH=. python scepter/tools/webui.py --cfg scepter/methods/studio/scepter_ui.yaml --language zh

Upon starting, you will find a "ChatBot" tab within the Gradio application, which serves as a chat-based interface to handle any requests related to image editing or generation.

ACE ComfyUI Workflow

Workflow

<table><tbody> <tr> <th align="center" colspan="4">ACE Workflow Examples</th> </tr> <tr> <th align="center" colspan="1">Control</th> <th align="center" colspan="1">Semantic</th> <th align="center" colspan="1">Element</th> </tr> <tr> <td> <a href="https://github.com/ali-vilab/ace-page/raw/main/assets/comfyui/ace_control.png" target="_blank"> <img src="https://github.com/ali-vilab/ace-page/raw/main/assets/comfyui/ace_control.png" width="200"> </a> </td> <td> <a href="https://github.com/ali-vilab/ace-page/raw/main/assets/comfyui/ace_semantic.png" target="_blank"> <img src="https://github.com/ali-vilab/ace-page/raw/main/assets/comfyui/ace_semantic.png" width="200"> </a> </td> <td> <a href="https://github.com/ali-vilab/ace-page/raw/main/assets/comfyui/ace_element.png" target="_blank"> <img src="https://github.com/ali-vilab/ace-page/raw/main/assets/comfyui/ace_element.png" width="200"> </a> </td> </tr> </tbody> </table>

FLUX Tuners

<table><tbody> <tr> <th align="center" colspan="3">Yarn Style</th> <th align="center" colspan="3">Soft Watercolor Style</th> </tr> <tr> <td><img src="asset/images/flux_tuner/flux_tuner_2_1.webp" width="200"></td> <td><img src="asset/images/flux_tuner/flux_tuner_2_2.webp" width="200"></td> <td><img src="asset/images/flux_tuner/flux_tuner_2_3.webp" width="200"></td> <td><img src="asset/images/flux_tuner/flux_tuner_1_1.webp" width="200"></td> <td><img src="asset/images/flux_tuner/flux_tuner_1_2.webp" width="200"></td> <td><img src="asset/images/flux_tuner/flux_tuner_1_3.webp" width="200"></td> </tr> <tr> <th align="center" colspan="3">Travel Style</th> <th align="center" colspan="3">WuKong Style</th> </tr> <tr> <td><img src="asset/images/flux_tuner/flux_tuner_3_1.webp" width="200"></td> <td><img src="asset/images/flux_tuner/flux_tuner_3_2.webp" width="200"></td> <td><img src="asset/images/flux_tuner/flux_tuner_3_3.webp" width="200"></td> <td><img src="asset/images/flux_tuner/flux_tuner_4_1.webp" width="200"></td> <td><img src="asset/images/flux_tuner/flux_tuner_4_2.webp" width="200"></td> <td><img src="asset/images/flux_tuner/flux_tuner_4_3.webp" width="200"></td> </tr> </tbody> </table>

ComfyUI Workflow

Workflow

<table><tbody> <tr> <th align="center" colspan="4">Example Workflow Case</th> </tr> <tr> <th align="center" colspan="1">Base</th> <th align="center" colspan="1">+Mantra</th> <th align="center" colspan="1">+Tuner</th> <th align="center" colspan="1">+Control</th> </tr> <tr> <td> <a href="asset/workflow/sdxl_base.json" target="_blank"> <img src="asset/workflow/sdxl_base.jpg" width="200"> </a> </td> <td> <a href="asset/workflow/sdxl_base_mantra.json" target="_blank"> <img src="asset/workflow/sdxl_base_mantra.jpg" width="200"> </a> </td> <td> <a href="asset/workflow/sdxl_base_mantra_tuner.json" target="_blank"> <img src="asset/workflow/sdxl_base_mantra_tuner.jpg" width="200"> </a> </td> <td> <a href="asset/workflow/sdxl_base_mantra_tuner_control.json" target="_blank"> <img src="asset/workflow/sdxl_base_mantra_tuner_control.jpg" width="200"> </a> </td> </tr> </tbody> </table>

🛠️ Installation

conda env create -f environment.yaml
conda activate scepter

We recommend installing the specific version of PyTorch and accelerate toolbox xFormers. You can install these recommended version by pip:

pip install -r requirements/recommended.txt
pip install scepter

🧩 Generative Framework

Tutorials

DocumentationKey Features
TrainDDP / FSDP / FairScale / Xformers
InferenceDynamic load/unload
Dataset ManagementLocal / Http / OSS / Modelscope

📝 Popular Approaches

Currently supported approaches

TasksMethodsLinks
Text-to-image GenerationSD v1.5Hugging Face Repo
Text-to-image GenerationSD v2.1Hugging Face Repo
Text-to-image GenerationSD-XLHugging Face Repo
Text-to-image GenerationFLUXHugging Face Repo
Efficient TuningLoRAArxiv   link
Efficient TuningRes-Tuning(NeurIPS23)Arxiv   link Page link
Controllable Image Synthesis🌟SCEdit(CVPR24)Arxiv   link Page link
Image Editing🌟LAR-GenArxiv   link Page link
Image Editing🌟StyleBoothArxiv   link Page link
Image Generation and Editing🌟ACEArxiv   link Page link Demo link <br> ModelScope link HuggingFace link

🖥️ SCEPTER Studio

Launch

To fully experience SCEPTER Studio, you can launch the following command line:

pip install scepter
python -m scepter.tools.webui

or run after clone repo code

git clone https://github.com/modelscope/scepter.git
PYTHONPATH=. python scepter/tools/webui.py --cfg scepter/methods/studio/scepter_ui.yaml

The startup of SCEPTER Studio eliminates the need for manual downloading and organizing of models; it will automatically load the corresponding models and store them in a local directory. Depending on the network and hardware situation, the initial startup usually requires 15-60 minutes, primarily involving the download and processing of SDv1.5, SDv2.1, and SDXL models. Therefore, subsequent startups will become much faster (about one minute) as downloading is no longer required.

Usage Demo

Image EditingTrainingModel SharingModel InferenceData Management
<video src="https://www.modelscope.cn/api/v1/models/iic/scepter/repo?Revision=master&FilePath=assets%2Fscepter_studio%2Fimage_editing_20240419.webm" width="240" controls></video><video src="https://www.modelscope.cn/api/v1/models/iic/scepter/repo?Revision=master&FilePath=assets%2Fscepter_studio%2Ftraining_20240419.webm" width="240" controls></video><video src="https://www.modelscope.cn/api/v1/models/iic/scepter/repo?Revision=master&FilePath=assets%2Fscepter_studio%2Fmodel_sharing_20240419.webm" width="240" controls></video><video src="https://www.modelscope.cn/api/v1/models/iic/scepter/repo?Revision=master&FilePath=assets%2Fscepter_studio%2Fmodel_inference_20240419.webm" width="240" controls></video><video src="https://www.modelscope.cn/api/v1/models/iic/scepter/repo?Revision=master&FilePath=assets%2Fscepter_studio%2Fdata_management_20240419.webm" width="240" controls></video>

Modelscope Studio & Huggingface Space

We deploy a work studio on Modelscope that includes only the inference tab, please refer to ms_scepter_studio and hf_scepter_studio

⚙️️ ComfyUI Workflow

Launch

Manually install by moving custom_nodes to ComfyUI.

cd path/to/scepter
pip install -e .
cp -r path/to/scepter/workflow/ path/to/ComfyUI/custom_nodes/ComfyUI-Scepter
cd path/to/ComfyUI
python main.py

In addition, we also support installation and usage through the ComfyUI Manager.

🔍 Learn More

BibTeX

If our work is useful for your research, please consider citing:

@misc{scepter,
    title = {SCEPTER, https://github.com/modelscope/scepter},
    author = {SCEPTER},
    year = {2023}
}

License

This project is licensed under the Apache License (Version 2.0).

Acknowledgement

Thanks to Stability-AI, SWIFT library, Fooocus and ComfyUI for their awesome work.