Home

Awesome

Trash detection - review of useful resources

A list of useful resources in the litter classification, detection or segmentation (mainly one class - garbage). Created during the detectwaste.ml project.

Contributing

Feel free to add issue with short description of new publication or create a pull request - add the new resource to the table or fill missing description.

Relevant Repositories

Table of Contents

PaperDatasetClassesTaskAlgorithmsResultsCode
Yang, M. et al., 2016Trashnet6classificationSVM<br>CNN (AlexNet)mAcc = 63%Github
G. Mittal et al., 2016GINI1localizationGarbNetmAcc = 87.69%SpotGarbage app
Awe, O. et al., 2017augmented Trashnet3detectionFaster R-CNNLandfill AP = 69.9% <br> Paper AP = 60.7%<br>Recycling = 74.4%<br>mAP = 68.3%:x:
M. S. Rad et al., 2017self-created25, but model works on 3detectionOverFeat-GoogLeNet architecturecigarette Prec. = 63.2% <br>leaves Prec. = 77,35%:x:
C. Bircanoğlu et al., 2018Trashnet6classificationResNet50, MobileNet, InceptionResNetV2, DenseNet[121, 169, 201], Xception, RecycleNet95% Accuracy (DenseNet121):x:
Aral, R.A. et al., 2018Trashnet6classificationMobileNet, Inception-V4, DenseNet[121, 169]95% Accuracy (DenseNet[121, 169]):x:
Chu, Y. et al., 2018.self-created5classificationAlexNet CNN, Multi hybird system (MHS)98.2% Accuracy (fixed orientation MHS):x:
Wang, Y. al., 2018self-created1detectionFast R-CNNAP = 89%Github
Liu, Y. et al., 2018self-created1detectionYOLOv2Acc = 89.71%:x:
Fulton, M. et al., 2019Trash-ICRA193detectionYOLOv2, Tiny-YOLO, Faster RCNN, SSDFaster RCNN mAP=81:x:
Carolis, B.D. et al., 2020self-created4detectionYOLOv3mAP@50 = 59.57%:x:
Proença, P.F. et al., 2020TACO60, but model was tested on 10, and 1segmentationMask RCNN1-class mAP = 15.9% <br>10-class mAP = 17.6%Github
Wang, T. et al., 2020MJU-Waste1segmentationFCN, PSPNet, CCNet, DeepLabv3TACO mPP - 96.07%<br>MJU-Waste mPP = 97.14%:x:
Hong, J. et al., 2020TrashCan 1.04segmentation, detectionMask RCNN, Faster RCNNFaster RCNN mAP=34.5, Mask R-CNN mAP=30.0:x:

Papers

Sorting

Classification

Detection

Segmentation