Awesome
<p align="center"><br><br> <img src="https://user-images.githubusercontent.com/260114/54724904-c7e7d300-4b4b-11e9-8bbd-ec3f9044c86e.png" width="200" /><br><br><br><br></p>Lys, a language that compiles to WebAssembly.
Read more about it in this blog post.
Where to start?
- To learn what can be used so far: browse the standard library
- To learn how real code looks like: browse the execution tests
- To learn how high level constructs get compiled: browse the sugar syntax tests
- To start developing it locally, I do
make watch
and then I run the tests in other terminal withmake snapshot
- To see an example project: browse the keccak repo
Getting started
For the time being I'll use npm to distribute the language.
-
npm i -g lys
-
Create a folder and a file
main.lys
import support::env #[export] fun test(): void = { support::test::START("This is a test suite") printf("Hello %X", 0xDEADBEEF) support::test::mustEqual(3 as u8, 3 as u16, "assertion name") support::test::END() }
-
Run
lys main.lys --test --wast
. It will createmain.wasm
main.wast
and will run the exported function namedtest
.
How does it look?
Structs & Implementing operators
struct Vector3(x: f32, y: f32, z: f32)
impl Vector3 {
fun -(lhs: Vector3, rhs: Vector3): Vector3 =
Vector3(
lhs.x - rhs.x,
lhs.y - rhs.y,
lhs.z - rhs.z
)
#[getter]
fun length(this: Vector3): f32 =
f32.sqrt(
this.x * this.x +
this.y * this.y +
this.z * this.z
)
}
fun distance(from: Vector3, to: Vector3): f32 = {
(from - to).length
}
Pattern matching
// this snippet is an actual unit test
import support::test
enum Color {
Red
Green
Blue
Custom(r: i32, g: i32, b: i32)
}
fun isRed(color: Color): boolean = {
match color {
case is Red -> true
case is Custom(r, g, b) -> r == 255 && g == 0 && b == 0
else -> false
}
}
#[export]
fun main(): void = {
mustEqual(isRed(Red), true, "isRed(Red)")
mustEqual(isRed(Green), false, "isRed(Green)")
mustEqual(isRed(Blue), false, "isRed(Blue)")
mustEqual(isRed(Custom(255,0,0)), true, "isRed(Custom(255,0,0))")
mustEqual(isRed(Custom(0,1,3)), false, "isRed(Custom(0,1,3))")
mustEqual(isRed(Custom(255,1,3)), false, "isRed(Custom(255,1,3))")
}
Algebraic data types
// this snippet is an actual unit test
enum Tree {
Node(value: i32, left: Tree, right: Tree)
Empty
}
fun sum(arg: Tree): i32 = {
match arg {
case is Empty -> 0
case is Node(value, left, right) -> value + sum(left) + sum(right)
}
}
#[export]
fun main(): void = {
val tree = Node(42, Node(3, Empty, Empty), Empty)
support::test::mustEqual(sum(tree), 45, "sum(tree) returns 45")
}
Types and overloads are created in the language itself
The compiler only knows how to emit functions and how to link function names. I did that so I had fewer things hardcoded into the compiler and allows me to write the language in the language.
To do that, I had to add either a %wasm { ... }
code block, and a %stack { ... }
type.
-
%wasm { ... }
: can only be used as a function body, not as an expression. It is literally the code that will be emited to WAST. The parameter names remain the same (prefixed with$
as WAST indicates). Other symbols can be resolved withfully::qualified::names
. -
%stack { wasm="i32", size=4 }
: it is a type literal, it indicates how much memory should be allocated in structs (size
) and what type to use in locals and function parameters (wasm
, it needs a better name).
/** We first define the type `int` */
type int = %stack { wasm="i32", size=4 }
/** Implement some operators for the type `int` */
impl int {
fun +(lhs: int, rhs: int): int = %wasm {
(i32.add (local.get $lhs) (local.get $rhs))
}
fun -(lhs: int, rhs: int): int = %wasm {
(i32.sub (local.get $lhs) (local.get $rhs))
}
fun >(lhs: int, rhs: int): boolean = %wasm {
(i32.gt_s (local.get $lhs) (local.get $rhs))
}
}
fun fibo(n: int, x1: int, x2: int): int = {
if (n > 0) {
fibo(n - 1, x2, x1 + x2)
} else {
x1
}
}
#[export "fibonacci"] // "fibonacci" is the name of the exported function
fun fib(n: int): int = fibo(n, 0, 1)
Some sugar
Enum types
enum Tree {
Node(value: i32, left: Tree, right: Tree)
Empty
}
Is the sugar syntax for
type Tree = Node | Empty
struct Node(value: i32, left: Tree, right: Tree)
struct Empty()
impl Tree {
fun is(lhs: Tree): boolean = lhs is Node || lhs is Empty
// ...
}
impl Node {
fun as(lhs: Node): Tree = %wasm { (local.get $lhs) }
// ... many methods were removed for clarity ..
}
impl Empty {
fun as(lhs: Node): Tree = %wasm { (local.get $lhs) }
// ...
}
is
and as
operators are just functions
impl u8 {
/**
* Given an expression with the shape:
*
* something as Type
* ^^^^^^^^^ ^^^^
* $lhs $rhs
*
* A function with the signature:
* fun as($lhs: LHSType): $rhs = ???
*
* Will be searched in the impl of LHSType
*
*/
fun as(lhs: u8): f32 = %wasm { (f32.convert_i32_u (local.get $lhs)) }
}
fun byteAsFloat(value: u8): f32 = value as f32
struct CustomColor(rgb: i32)
type Red = void
impl Red {
fun is(lhs: CustomColor): boolean = match lhs {
case is Custom(rgb) -> (rgb & 0xFF0000) == 0xFF0000
else -> false
}
}
var x = CustomColor(0xFF0000) is Red
// this may not be a good thing, but you get the idea
There are no dragons behind the structs
The struct
keyword is only a high level construct that creats a type and base implementation of something that behaves like a data type, normally in the heap.
struct Node(value: i32, left: Tree, right: Tree)
Is the sugar syntax for
// We need to keep the name and order of the fields for deconstructors
type Node = %struct { value, left, right }
impl Node {
fun as(lhs: Node): Tree = %wasm {
(local.get $lhs)
}
#[explicit]
fun as(lhs: Node): ref = %wasm {
(local.get $lhs)
}
// the discriminant is the type number assigned by the compiler
#[inline]
private fun Node$discriminant(): u64 = {
val discriminant: u32 = Node.^discriminant
discriminant as u64 << 32
}
// this is the function that gets called when Node is used as a function call
fun apply(value: i32, left: Tree, right: Tree): Node = {
// a pointer is allocated. Then using the function `fromPointer` it is converted
// to a valid Node reference
var $ref = fromPointer(system::core::memory::calloc(1 as u32, Node.^allocationSize))
property$0($ref, value)
property$1($ref, left)
property$2($ref, right)
$ref
}
// this function converts a raw address into a valid Node type
private fun fromPointer(ptr: u32): Node = %wasm {
(i64.or (call Node$discriminant) (i64.extend_i32_u (local.get $ptr)))
}
fun ==(a: Node, b: Node): boolean = %wasm {
(i64.eq (local.get $a) (local.get $b))
}
fun !=(a: Node, b: Node): boolean = %wasm {
(i64.ne (local.get $a) (local.get $b))
}
#[getter]
fun value(self: Node): i32 = property$0(self)
#[setter]
fun value(self: Node, value: i32): void = property$0(self, value)
#[inline]
private fun property$0(self: Node): i32 = i32.load(self, Node.^property$0_offset)
#[inline]
private fun property$0(self: Node, value: i32): void = i32.store(self, value, Node.^property$0_offset)
#[getter]
fun left(self: Node): Tree = property$1(self)
#[setter]
fun left(self: Node, value: Tree): void = property$1(self, value)
#[inline]
private fun property$1(self: Node): Tree = Tree.load(self, Node.^property$1_offset)
#[inline]
private fun property$1(self: Node, value: Tree): void = Tree.store(self, value, Node.^property$1_offset)
#[getter]
fun right(self: Node): Tree = property$2(self)
#[setter]
fun right(self: Node, value: Tree): void = property$2(self, value)
#[inline]
private fun property$2(self: Node): Tree = Tree.load(self, Node.^property$2_offset)
#[inline]
private fun property$2(self: Node, value: Tree): void = Tree.store(self, value, Node.^property$2_offset)
fun is(a: (Node | ref)): boolean = %wasm {
(i64.eq (i64.and (i64.const 0xffffffff00000000) (local.get $a)) (call Node$discriminant))
}
fun store(lhs: ref, rhs: Node, offset: u32): void = %wasm {
(i64.store (i32.add (local.get $offset) (call addressFromRef (local.get $lhs))) (local.get $rhs))
}
fun load(lhs: ref, offset: u32): Node = %wasm {
(i64.load (i32.add (local.get $offset) (call addressFromRef (local.get $lhs))))
}
}