Awesome
Auto-GAS
Auto-GAS: Automated Proxy Discovery for Training-free Generative Architecture Search
This is the code for the paper: Auto-GAS: Automated Proxy Discovery for Training-free Generative Architecture Search.
Requirements
- Python 3.6
- PyTorch 1.0.0
- CUDA 9.0
- NVIDIA GPU + CUDA CuDNN
Usage
Data
Download the dataset.
Training
Train the search space.
python train.py --dataset mnist --data_path data --save_path save
Evaluation
Evaluate the search space.
python evaluate.py --dataset mnist --data_path data --save_path save
Acknowledgements
This code is based on the following projects.
Citation
If you find Auto-GAS useful in your research, please consider citing the following paper:
@inproceedings{li2024auto,
title={Auto-gas: Automated proxy discovery for training-free generative architecture search},
author={Li, Lujun and Sun, Haosen and Li, Shiwen and Dong, Peijie and Luo, Wenhan and Xue, Wei and Liu, Qifeng and Guo, Yike},
year={2024},
organization={ECCV}
}
License
This project is licensed under the MIT License.