Home

Awesome

PanCollection

Pansharpening Datasets from WorldView 2, WorldView 3, QuickBird, Gaofen 2 sensors

Download by Google Drive

(1) The training and testing datasets for WorldView 3:

WorldView 3 DatasetLinkSize
Training Dataset[download link]5.76GB
Testing Dataset (ReducedData, H5 Format)[download link]20 examples
Testing Dataset (FullData, H5 Format)[download link]20 examples
Testing Dataset (ReducedData, mat Format)[download link]20 examples
Testing Dataset (FullData, mat Format)[download link]20 examples

Note: H5 files have same data with mat files (but with different formats) which can be used for single image test

(2) The training and testing datasets for QuickBird:

QuickBird DatasetLinkSize
Training Dataset[download link]5.37GB
Testing Dataset (ReducedData, H5 Format)[download link]20 examples
Testing Dataset (FullData, H5 Format)[download link]20 examples
Testing Dataset (ReducedData, mat Format)[download link]20 examples
Testing Dataset (FullData, mat Format)[download link]20 examples

(3) The training and testing datasets for Gaofen 2:

Gaofen 2 DatasetLinkSize
Training Dataset[download link]6.21GB
Testing Dataset (ReducedData, H5 Format)[download link]20 examples
Testing Dataset (FullData, H5 Format)[download link]20 examples
Testing Dataset (ReducedData, mat Format)[download link]20 examples
Testing Dataset (FullData, mat Format)[download link]20 examples

(4) The testing datasets for WorldView 2:

WorldView 2 DatasetLinkSize
Testing Dataset (ReducedData, H5 Format)[download link]20 examples
Testing Dataset (FullData, H5 Format)[download link]20 examples
Testing Dataset (ReducedData, mat Format)[download link]20 examples
Testing Dataset (FullData, mat Format)[download link]20 examples

Note: This data is only used for the test of network generalization, thus no training dataset!

Download by Baidu Cloud

(1) The training and testing datasets for WorldView 3:

WorldView 3 DatasetLinkSize
Training Dataset[download link]5.76GB
Testing Dataset (ReducedData, H5 Format)[download link]20 examples
Testing Dataset (FullData, H5 Format)[download link]20 examples
Testing Dataset (ReducedData, mat Format)[download link]20 examples
Testing Dataset (FullData, mat Format)[download link]20 examples

(2) The training and testing datasets for QuickBird:

QuickBird DatasetLinkSize
Training Dataset[download link]5.37GB
Testing Dataset (ReducedData, H5 Format)[download link]20 examples
Testing Dataset (FullData, H5 Format)[download link]20 examples
Testing Dataset (ReducedData, mat Format)[download link]20 examples
Testing Dataset (FullData, mat Format)[download link]20 examples

(3) The training and testing datasets for Gaofen 2:

Gaofen 2 DatasetLinkSize
Training Dataset[download link]6.21GB
Testing Dataset (ReducedData, H5 Format)[download link]20 examples
Testing Dataset (FullData, H5 Format)[download link]20 examples
Testing Dataset (ReducedData, mat Format)[download link]20 examples
Testing Dataset (FullData, mat Format)[download link]20 examples

(4) The testing datasets for WorldView 2:

WorldView 2 DatasetLinkSize
Testing Dataset (ReducedData, H5 Format)[download link]20 examples
Testing Dataset (FullData, H5 Format)[download link]20 examples
Testing Dataset (ReducedData, mat Format)[download link]20 examples
Testing Dataset (FullData, mat Format)[download link]20 examples

Note: This data is only used for the test of network generalization, thus no training dataset!

Reference

More details about the similation procedure of datasets, you may check the following two papers:

@ARTICLE{dengjig2022,
	author={邓良剑,冉燃,吴潇,张添敬},
	journal={中国图象图形学报},
	title={遥感图像全色锐化的卷积神经网络方法研究进展},
 	year={2022},
  	volume={},
  	number={9},
  	pages={},
  	doi={10.11834/jig.220540}
   }

and

@ARTICLE{deng2022vivone,
	author={L. -J. Deng, G. Vivone, M. E. Paoletti, G. Scarpa, J. He, Y. Zhang, J. Chanussot, and A. Plaza},
	journal={IEEE Geoscience and Remote Sensing Magazine}, 
	title={Machine Learning in Pansharpening: A Benchmark, from Shallow to Deep Networks}, 
	year={2022},
	volume={10},
	number={3},
	pages={279-315},
	doi={10.1109/MGRS.2022.3187652}
   }

Contact:

We are glad to hear from you. If you have any questions, please feel free to contact wxwsx1997@qq.com.