Home

Awesome

<p align="center"><img src="https://raw.githubusercontent.com/learnables/learn2learn/gh-pages/assets/img/l2l-full.png" height="120px" /></p>

Test Status arXiv

learn2learn is a software library for meta-learning research.

learn2learn builds on top of PyTorch to accelerate two aspects of the meta-learning research cycle:

learn2learn provides low-level utilities and unified interface to create new algorithms and domains, together with high-quality implementations of existing algorithms and standardized benchmarks. It retains compatibility with torchvision, torchaudio, torchtext, cherry, and any other PyTorch-based library you might be using.

To learn more, see our whitepaper: arXiv:2008.12284

Overview

Resources

Installation

pip install learn2learn

Snippets & Examples

The following snippets provide a sneak peek at the functionalities of learn2learn.

High-level Wrappers

<details> <summary><b>Few-Shot Learning with MAML</b></summary>

For more algorithms (ProtoNets, ANIL, Meta-SGD, Reptile, Meta-Curvature, KFO) refer to the <a href="https://github.com/learnables/learn2learn/tree/master/examples/vision">examples</a> folder. Most of them can be implemented with with the GBML wrapper. (<a href="http://learn2learn.net/docs/learn2learn.algorithms/#gbml">documentation</a>).

maml = l2l.algorithms.MAML(model, lr=0.1)
opt = torch.optim.SGD(maml.parameters(), lr=0.001)
for iteration in range(10):
    opt.zero_grad()
    task_model = maml.clone()  # torch.clone() for nn.Modules
    adaptation_loss = compute_loss(task_model)
    task_model.adapt(adaptation_loss)  # computes gradient, update task_model in-place
    evaluation_loss = compute_loss(task_model)
    evaluation_loss.backward()  # gradients w.r.t. maml.parameters()
    opt.step()
</details> <details> <summary><b>Meta-Descent with Hypergradient</b></summary>

Learn any kind of optimization algorithm with the LearnableOptimizer. (<a href="https://github.com/learnables/learn2learn/tree/master/examples/optimization">example</a> and <a href="http://learn2learn.net/docs/learn2learn.optim/#learnableoptimizer">documentation</a>)

linear = nn.Linear(784, 10)
transform = l2l.optim.ModuleTransform(l2l.nn.Scale)
metaopt = l2l.optim.LearnableOptimizer(linear, transform, lr=0.01)  # metaopt has .step()
opt = torch.optim.SGD(metaopt.parameters(), lr=0.001)  # metaopt also has .parameters()

metaopt.zero_grad()
opt.zero_grad()
error = loss(linear(X), y)
error.backward()
opt.step()  # update metaopt
metaopt.step()  # update linear
</details>

Learning Domains

<details> <summary><b>Custom Few-Shot Dataset</b></summary>

Many standardized datasets (Omniglot, mini-/tiered-ImageNet, FC100, CIFAR-FS) are readily available in learn2learn.vision.datasets. (<a href="http://learn2learn.net/docs/learn2learn.vision/#learn2learnvisiondatasets">documentation</a>)

dataset = l2l.data.MetaDataset(MyDataset())  # any PyTorch dataset
transforms = [  # Easy to define your own transform
    l2l.data.transforms.NWays(dataset, n=5),
    l2l.data.transforms.KShots(dataset, k=1),
    l2l.data.transforms.LoadData(dataset),
]
taskset = Taskset(dataset, transforms, num_tasks=20000)
for task in taskset:
    X, y = task
    # Meta-train on the task
</details> <details> <summary><b>Environments and Utilities for Meta-RL</b></summary>

Parallelize your own meta-environments with AsyncVectorEnv, or use the standardized ones. (<a href="http://learn2learn.net/docs/learn2learn.gym/#metaenv">documentation</a>)

def make_env():
    env = l2l.gym.HalfCheetahForwardBackwardEnv()
    env = cherry.envs.ActionSpaceScaler(env)
    return env

env = l2l.gym.AsyncVectorEnv([make_env for _ in range(16)])  # uses 16 threads
for task_config in env.sample_tasks(20):
    env.set_task(task)  # all threads receive the same task
    state = env.reset()  # use standard Gym API
    action = my_policy(env)
    env.step(action)
</details>

Low-Level Utilities

<details> <summary><b>Differentiable Optimization</b></summary>

Learn and differentiate through updates of PyTorch Modules. (<a href="http://learn2learn.net/docs/learn2learn.optim/#parameterupdate">documentation</a>)


model = MyModel()
transform = l2l.optim.KroneckerTransform(l2l.nn.KroneckerLinear)
learned_update = l2l.optim.ParameterUpdate(  # learnable update function
        model.parameters(), transform)
clone = l2l.clone_module(model)  # torch.clone() for nn.Modules
error = loss(clone(X), y)
updates = learned_update(  # similar API as torch.autograd.grad
    error,
    clone.parameters(),
    create_graph=True,
)
l2l.update_module(clone, updates=updates)
loss(clone(X), y).backward()  # Gradients w.r.t model.parameters() and learned_update.parameters()
</details>

Changelog

A human-readable changelog is available in the CHANGELOG.md file.

Citation

To cite the learn2learn repository in your academic publications, please use the following reference.

Arnold, Sebastien M. R., Praateek Mahajan, Debajyoti Datta, Ian Bunner, and Konstantinos Saitas Zarkias. 2020. “learn2learn: A Library for Meta-Learning Research.” arXiv [cs.LG]. http://arxiv.org/abs/2008.12284.

You can also use the following Bibtex entry.

@article{Arnold2020-ss,
  title         = "learn2learn: A Library for {Meta-Learning} Research",
  author        = "Arnold, S{\'e}bastien M R and Mahajan, Praateek and Datta,
                   Debajyoti and Bunner, Ian and Zarkias, Konstantinos Saitas",
  month         =  aug,
  year          =  2020,
  url           = "http://arxiv.org/abs/2008.12284",
  archivePrefix = "arXiv",
  primaryClass  = "cs.LG",
  eprint        = "2008.12284"
}

Acknowledgements & Friends

  1. TorchMeta is similar library, with a focus on datasets for supervised meta-learning.
  2. higher is a PyTorch library that enables differentiating through optimization inner-loops. While they monkey-patch nn.Module to be stateless, learn2learn retains the stateful PyTorch look-and-feel. For more information, refer to their ArXiv paper.
  3. We are thankful to the following open-source implementations which helped guide the design of learn2learn: