Awesome
UCAS-AOD-benchmark
Introduction
This repositary rearrages files from UCAS-AOD dataset so that it can be loaded and trained in R-YOLOv4.
Dataset repare
- Download UCAS-AOD dataset.
- Unzip dataset package into your root_dir, and rename the folder to
UCAS_AOD
. - Move the
ImageSets
folder which containstrain.txt
,val.txt
,andtest.txt
intoUCAS_AOD
folder. - Run
data_prepare.py
, and you will obtain directory as follow:
root_dir
├───data_prepare.py
└───UCAS_AOD
├───AllImages
│ │ P0001.png
│ │ P0002.png
│ │ ...
│ └───P1510.png
├───Annotations
│ │ P0001.txt
│ │ P0002.txt
│ │ ...
│ └───P1510.txt
├───ImageSets
│ │ train.txt
│ │ val.txt
│ └───test.txt
├───test
│ └───...
├───train
│ └───...
├───val
│ └───...
├───CAR
├───PLANE
└───Neg
notes: The integrated dataset contains 1510 images, with train set 755, val set 302, test set 452(following DOTA division 5:2:3). Files are numbered from 1-1510, in which 1-510
are cars, 511-1510
are airplanes. Besides, classname is attached to label file in format of classname x1 y1 x2 y2 x3 y3 x4 y4 theta lx ly w h
,
for example:
car 2.763971e+02 9.125021e+01 2.911375e+02 3.823406e+01 3.308891e+02 4.928647e+01 3.161486e+02 1.023026e+02 1.055379e+02 2.787673e+02 3.876027e+01 4.975157e+01 6.301615e+01
car 3.002141e+02 1.003123e+02 3.209637e+02 4.665470e+01 3.566901e+02 6.047021e+01 3.359405e+02 1.141279e+02 1.111416e+02 3.055889e+02 4.856245e+01 4.572642e+01 6.365764e+01
...