Home

Awesome

<p align="center"> <a href="https://github.com/krober10nd/SeismicMesh"><img alt="SeismicMesh" src="https://user-images.githubusercontent.com/18619644/92964244-28f31d00-f44a-11ea-9aa0-3d8ed0a1b60e.jpg" width="40%"></a> <p align="center">Create high-quality, simulation-ready 2D/3D meshes.</p> </p>

status CircleCI ReadTheDocs CodeCov Code style: black PyPI pyversions PyPi GPL

SeismicMesh: Triangular Mesh generation in Python

SeismicMesh is a Python package for simplex mesh generation in two or three dimensions. As an implementation of DistMesh, it produces high-geometric quality meshes at the expense of speed. For increased efficiency, the core package is written in C++, works in parallel, and uses the Computational Geometry Algorithms Library. SeismicMesh can also produce mesh-density functions from seismological data to be used in the mesh generator.

SeismicMesh is distributed under the GPL3 license and more details can be found in our short paper.

Table of contents

<!--ts--> <!--te-->

Installation

For installation, SeismicMesh needs CGAL:

sudo apt install libcgal-dev

After that, SeismicMesh can be installed from the Python Package Index (pypi), so with:

pip install -U SeismicMesh

If you'd like to read and write velocity models from segy/h5 format, you can install like:

pip install -U SeismicMesh[io]

For more detailed information about installation and requirements see:

Install - How to install SeismicMesh.

Contributing

All contributions are welcome!

To contribute to the software:

  1. Fork the repository.
  2. Clone the forked repository, add your contributions and push the changes to your fork.
  3. Create a Pull request

Before creating the pull request, make sure that the tests pass by running

tox

Some things that will increase the chance that your pull request is accepted:

Codebase

Here is a visual overview of the repository. An interactive version of this image can be found here: https://octo-repo-visualization.vercel.app/?repo=krober10nd%2FSeismicMesh

Visualization of this repo

Citing

You may use the following BibTeX entry:

@article{Roberts2021,
  doi = {10.21105/joss.02687},
  url = {https://doi.org/10.21105/joss.02687},
  year = {2021},
  publisher = {The Open Journal},
  volume = {6},
  number = {57},
  pages = {2687},
  author = {Keith J. Roberts and Rafael dos Santos Gioria and William J. Pringle},
  title = {SeismicMesh: Triangular meshing for seismology},
  journal = {Journal of Open Source Software}
}

Problems?

If something isn't working as it should or you'd like to recommend a new addition/feature to the software, please let me know by starting an issue through the issues tab. I'll try to get to it as soon as possible.

Examples

The user can quickly build quality 2D/3D meshes from seismic velocity models in serial/parallel.

BP2004

WARNING: To run the code snippet below you must download the 2D BP2004 seismic velocity model and then you must uncompress it (e.g., gunzip). This file can be downloaded from here

Above shows the mesh in ParaView that results from running the code below

from mpi4py import MPI
import meshio

from SeismicMesh import get_sizing_function_from_segy, generate_mesh, Rectangle

comm = MPI.COMM_WORLD

"""
Build a mesh of the BP2004 benchmark velocity model in serial or parallel
Takes roughly 1 minute with 2 processors and less than 1 GB of RAM.
"""

# Name of SEG-Y file containg velocity model.
fname = "vel_z6.25m_x12.5m_exact.segy"

# Bounding box describing domain extents (corner coordinates)
bbox = (-12000.0, 0.0, 0.0, 67000.0)

# Desired minimum mesh size in domain
hmin = 75.0

rectangle = Rectangle(bbox)

# Construct mesh sizing object from velocity model
ef = get_sizing_function_from_segy(
    fname,
    bbox,
    hmin=hmin,
    wl=10,
    freq=2,
    dt=0.001,
    grade=0.15,
    domain_pad=1e3,
    pad_style="edge",
)

points, cells = generate_mesh(domain=rectangle, edge_length=ef)

if comm.rank == 0:
    # Write the mesh in a vtk format for visualization in ParaView
    # NOTE: SeismicMesh outputs assumes the domain is (z,x) so for visualization
    # in ParaView, we swap the axes so it appears as in the (x,z) plane.
    meshio.write_points_cells(
        "BP2004.vtk",
        points[:, [1, 0]] / 1000,
        [("triangle", cells)],
        file_format="vtk",
    )

Note SeismicMesh can also be used to write velocity models to disk in a hdf5 format using the function write_velocity_model. Following the previous example above with the BP2004 velocity model, we create an hdf5 file with a domain pad of 1000 m.

from SeismicMesh import write_velocity_model

# Name of SEG-Y file containg velocity model.
fname = "vel_z6.25m_x12.5m_exact.segy"

# Bounding box describing domain extents (corner coordinates)
bbox = (-12000.0, 0.0, 0.0, 67000.0)

write_velocity_model(
     fname,
     ofname="bp2004_velocity_model",  # how the file will be called (with a .hdf5 extension)
     bbox=bbox,
     domain_pad=500,  # the width of the domain pad in meters
     pad_style="edge",  # how the velocity data will be extended into the layer
     units="m-s",  # the units that the velocity model is in.
 )

EAGE

WARNING: To run the code snippet below you must download (and uncompress) the 3D EAGE seismic velocity model from (WARNING: File is ~500 MB) here

WARNING: Computationaly demanding! Running this example takes around 3 minutes in serial and requires around 2 GB of RAM due to the 3D nature of the problem and the domain size.

Above shows the mesh in ParaView that results from running the code below.

<!--pytest-codeblocks:skip-->
from mpi4py import MPI
import zipfile
import meshio

from SeismicMesh import (
    get_sizing_function_from_segy,
    generate_mesh,
    sliver_removal,
    Cube,
)

comm = MPI.COMM_WORLD

# Bounding box describing domain extents (corner coordinates)
bbox = (-4200.0, 0.0, 0.0, 13520.0, 0.0, 13520.0)

# Desired minimum mesh size in domain.
hmin = 150.0

# This file is in a big Endian binary format, so we must tell the program the shape of the velocity model.
path = "Salt_Model_3D/3-D_Salt_Model/VEL_GRIDS/"
if comm.rank == 0:
    # Extract binary file Saltf@@ from SALTF.ZIP
    zipfile.ZipFile(path + "SALTF.ZIP", "r").extract("Saltf@@", path=path)

fname = path + "Saltf@@"

# Dimensions of model (number of grid points in z, x, and y)
nx, ny, nz = 676, 676, 210

cube = Cube(bbox)

# A graded sizing function is created from the velocity model along with a signed distance function by passing
# the velocity grid that we created above.
# More details can be found here: https://seismicmesh.readthedocs.io/en/master/api.html

ef = get_sizing_function_from_segy(
    fname,
    bbox,
    hmin=hmin,
    dt=0.001,
    freq=2,
    wl=5,
    grade=0.15,
    hmax=5e3,
    domain_pad=250,
    pad_style="linear_ramp",
    nz=nz,
    nx=nx,
    ny=ny,
    byte_order="big",
    axes_order=(2, 0, 1),  # order for EAGE (x, y, z) to default order (z,x,y)
    axes_order_sort="F",  # binary is packed in a FORTRAN-style
)

points, cells = generate_mesh(domain=cube, edge_length=ef, max_iter=75)

# For 3D mesh generation, we provide an implementation to bound the minimum dihedral angle::
# We use the preserve kwarg to ensure the level-set is very accurately preserved.
points, cells = sliver_removal(
    points=points, bbox=bbox, domain=cube, edge_length=ef, preserve=True
)

# Meshes can be written quickly to disk using meshio and visualized with ParaView::
if comm.rank == 0:

    # NOTE: SeismicMesh outputs assumes the domain is (z,x,y) so for visualization
    # in ParaView, we swap the axes so it appears as in the (x,y,z) plane.
    meshio.write_points_cells(
        "EAGE_Salt.vtk",
        points[:, [1, 2, 0]] / 1000.0,
        [("tetra", cells)],
    )

The user can still specify their own signed distance functions and sizing functions to generate_mesh (in serial or parallel) just like the original DistMesh algorithm but now with quality bounds in 3D. Try the codes below!

Cylinder

<img alt="Cylinder" src="https://user-images.githubusercontent.com/18619644/97082301-0e7e9880-15df-11eb-9055-15394213d755.png" width="30%">
# Mesh a cylinder
from mpi4py import MPI
import meshio

import SeismicMesh

comm = MPI.COMM_WORLD

hmin = 0.10

cylinder = SeismicMesh.Cylinder(h=1.0, r=0.5)

points, cells = SeismicMesh.generate_mesh(
    domain=cylinder,
    edge_length=hmin,
)

points, cells = SeismicMesh.sliver_removal(
    points=points,
    domain=cylinder,
    edge_length=hmin,
)

if comm.rank == 0:
    meshio.write_points_cells(
        "Cylinder.vtk",
        points,
        [("tetra", cells)],
        file_format="vtk",
    )

Disk

<img alt="Disk" src="https://user-images.githubusercontent.com/18619644/97063883-b9a83700-1578-11eb-9cd7-3ff0cbac20d9.png" width="30%">
# mesh a disk
import meshio
import SeismicMesh

disk = SeismicMesh.Disk([0.0, 0.0], 1.0)
points, cells = SeismicMesh.generate_mesh(domain=disk, edge_length=0.1)
meshio.write_points_cells(
    "disk.vtk",
    points,
    [("triangle", cells)],
    file_format="vtk",
)

Square

<img alt="Square" src="https://user-images.githubusercontent.com/18619644/97063852-7b127c80-1578-11eb-97d5-cfe07cc969ec.png" width="30%">
# mesh a square/rectangle
import meshio
import SeismicMesh

bbox = (0.0, 1.0, 0.0, 1.0)
square = SeismicMesh.Rectangle(bbox)
points, cells = SeismicMesh.generate_mesh(domain=square, edge_length=0.05)
meshio.write_points_cells(
    "square.vtk",
    points,
    [("triangle", cells)],
    file_format="vtk",
)

Cube

<img alt="Cube" src="https://user-images.githubusercontent.com/18619644/97063751-e1e36600-1577-11eb-9387-613f3ae04bff.png" width="30%">
# mesh a cuboid/cube
import meshio
import SeismicMesh

bbox = (0.0, 1.0, 0.0, 1.0, 0.0, 1.0)
cube = SeismicMesh.Cube(bbox)
points, cells = SeismicMesh.generate_mesh(domain=cube, edge_length=0.05)
points, cells = SeismicMesh.sliver_removal(points=points, domain=cube, edge_length=0.05)
meshio.write_points_cells(
    "cube.vtk",
    points,
    [("tetra", cells)],
    file_format="vtk",
)

Torus

<img alt="Torus" src="https://user-images.githubusercontent.com/18619644/97063588-eeb38a00-1576-11eb-8cff-8e77ea4d2946.png" width="30%">
# mesh a torus
import meshio
import SeismicMesh

hmin = 0.10

torus = SeismicMesh.Torus(r1=1.0, r2=0.5)
points, cells = SeismicMesh.generate_mesh(
    domain=torus,
    edge_length=hmin,
)
points, cells = SeismicMesh.sliver_removal(
    points=points, domain=torus, edge_length=hmin
)
meshio.write_points_cells(
    "torus.vtk",
    points,
    [("tetra", cells)],
)
<img alt="Torus" src="https://user-images.githubusercontent.com/18619644/97081705-8ac2ad00-15da-11eb-9466-a86216b8908c.png" width="30%">

Prism

# mesh a prism
import meshio

import SeismicMesh

hmin = 0.05
prism = SeismicMesh.Prism(b=0.5, h=0.5)

points, cells = SeismicMesh.generate_mesh(
    domain=prism,
    edge_length=hmin,
)
points, cells = SeismicMesh.sliver_removal(
    points=points, domain=prism, edge_length=hmin
)
meshio.write_points_cells(
    "prism.vtk",
    points,
    [("tetra", cells)],
    file_format="vtk",
)

Union

<img alt="Union" src="https://user-images.githubusercontent.com/18619644/97081772-045a9b00-15db-11eb-8356-7863cdf274a3.png" width="30%">
# Compute the union of several SDFs to create more complex geometries
import meshio
import SeismicMesh

h = 0.10
rect0 = SeismicMesh.Rectangle((0.0, 1.0, 0.0, 0.5))
rect1 = SeismicMesh.Rectangle((0.0, 0.5, 0.0, 1.0))
disk0 = SeismicMesh.Disk([0.5, 0.5], 0.5)
union = SeismicMesh.Union([rect0, rect1, disk0])
# Visualize the signed distance function
union.show()
points, cells = SeismicMesh.generate_mesh(domain=union, edge_length=h)
meshio.write_points_cells(
    "Lshape_wDisk.vtk",
    points,
    [("triangle", cells)],
    file_format="vtk",
)

Intersection

<img alt="Leaf" src="https://user-images.githubusercontent.com/18619644/97081808-41bf2880-15db-11eb-9333-2d1230621c01.png" width="30%">
# Compute the intersection of several SDFs to create more complex geometries
import meshio
import SeismicMesh

h = 0.05
rect0 = SeismicMesh.Rectangle((0.0, 1.0, 0.0, 1.0))
disk0 = SeismicMesh.Disk([0.25, 0.25], 0.5)
disk1 = SeismicMesh.Disk([0.75, 0.75], 0.5)
intersection = SeismicMesh.Intersection([rect0, disk0, disk1])
points, cells = SeismicMesh.generate_mesh(domain=intersection, edge_length=h)
meshio.write_points_cells(
    "Leaf.vtk",
    points,
    [("triangle", cells)],
    file_format="vtk",
)

Difference

<img alt="Hole" src="https://user-images.githubusercontent.com/18619644/97081829-69ae8c00-15db-11eb-815d-a8302f822337.png" width="30%">
# Compute the difference of two SDFs to create more complex geometries.
import meshio
import SeismicMesh

h = 0.05
rect0 = SeismicMesh.Rectangle((0.0, 1.0, 0.0, 1.0))
disk0 = SeismicMesh.Disk([0.5, 0.5], 0.1)
disk1 = SeismicMesh.Disk([0.75, 0.75], 0.20)
difference = SeismicMesh.Difference([rect0, disk0, disk1])
points, cells = SeismicMesh.generate_mesh(domain=difference, edge_length=h)
meshio.write_points_cells(
    "Hole.vtk",
    points,
    [("triangle", cells)],
    file_format="vtk",
)

Difference of Signed Distance Functions in 3-D

<img alt="Cube wHoles" src="https://user-images.githubusercontent.com/18619644/97081862-ad08fa80-15db-11eb-94b2-801001137f1a.png" width="30%">
# Compute the difference of several SDFs in 3D
import meshio
import SeismicMesh

h = 0.10
cube0 = SeismicMesh.Cube((0.0, 1.0, 0.0, 1.0, 0.0, 1.0))
ball1 = SeismicMesh.Ball([0.5, 0.0, 0.5], 0.30)
ball2 = SeismicMesh.Ball([0.5, 0.5, 0.0], 0.30)
ball3 = SeismicMesh.Ball([0.0, 0.5, 0.5], 0.30)
ball4 = SeismicMesh.Ball([0.5, 0.5, 0.5], 0.45)
difference = SeismicMesh.Difference([cube0, ball1, ball2, ball3, ball4])
points, cells = SeismicMesh.generate_mesh(domain=difference, edge_length=h, verbose=1)
points, cells = SeismicMesh.sliver_removal(
    points=points, domain=difference, edge_length=h, verbose=1
)
meshio.write_points_cells(
    "Cube_wHoles.vtk",
    points,
    [("tetra", cells)],
    file_format="vtk",
)

Immersion

<img alt="Immersed disk" src="https://user-images.githubusercontent.com/18619644/99576017-37b0ff80-29b8-11eb-881d-a9b0dd0adc34.png" width="30%">
# Immerse a subdomain so that it's boundary is conforming in the mesh.
import numpy as np

import meshio

import SeismicMesh

box0 = SeismicMesh.Rectangle((-1.25, 0.0, -0.250, 1.250))
disk0 = SeismicMesh.Disk([-0.5, 0.5], 0.25)

hmin = 0.10


fh = lambda p: 0.05 * np.abs(disk0.eval(p)) + hmin

points, cells = SeismicMesh.generate_mesh(
    domain=box0,
    edge_length=fh,
    h0=hmin,
    subdomains=[disk0],
    max_iter=100,
)
meshio.write_points_cells(
    "Square_wsubdomain.vtk",
    points,
    [("triangle", cells)],
    file_format="vtk",
)

Boundaries

Boundary conditions can also be prescribed and written to gmsh compatible files using mehsio. In the following example, we immerse a disk into the connectivity and then prescribe boundary conditions around the circle and each wall of the domain for later usage inside a finite element solver.

<img width="1221" alt="Screen Shot 2021-02-12 at 12 04 03 PM" src="https://user-images.githubusercontent.com/18619644/107784877-b1902500-6d2a-11eb-98f3-e01c1175f498.png">
import numpy as np
import meshio
import SeismicMesh as sm

bbox = (0.0, 10.0, 0.0, 1.0)
channel = sm.Rectangle(bbox)
suspension = sm.Disk([0.5, 0.5], 0.25)

hmin = 0.10
fh = lambda p: 0.05 * np.abs(suspension.eval(p)) + hmin
points, cells = sm.generate_mesh(
    domain=channel,
    edge_length=fh,
    h0=hmin,
    subdomains=[suspension],
    max_iter=1000,
 )
# This gets the edges of the mesh in a winding order (clockwise or counterclockwise).
ordered_bnde = sm.geometry.get_winded_boundary_edges(cells)
# We use the midpoint of the edge to determine its boundary label
mdpt = points[ordered_bnde].sum(1) / 2
infl = ordered_bnde[mdpt[:, 0] < 1e-6, :]  # x=0.0
outfl = ordered_bnde[mdpt[:, 0] > 9.9 + 1e-6, :]  # x=10.0
walls = ordered_bnde[
    (mdpt[:, 1] < 1e-6) | (mdpt[:, 1] > 0.99 + 1e-6), :
]  # y=0.0 or y=1.0
cells_prune = cells[suspension.eval(sm.geometry.get_centroids(points, cells)) < 0]
circle = sm.geometry.get_winded_boundary_edges(cells_prune)

# Write to gmsh22 format with boundary conditions for the walls and disk/circle.
meshio.write_points_cells(
    "example.msh",
    points,
    cells=[
        ("triangle", cells),
        ("line", np.array(infl)),
        ("line", np.array(outfl)),
        ("line", np.array(walls)),
        ("line", np.array(circle)),
    ],
    field_data={
        "InFlow": np.array([11, 1]),
        "OutFlow": np.array([12, 1]),
        "Walls": np.array([13, 1]),
        "Circle": np.array([14, 1]),
    },
    cell_data={
        "gmsh:physical": [
            np.repeat(3, len(cells)),
            np.repeat(11, len(infl)),
            np.repeat(12, len(outfl)),
            np.repeat(13, len(walls)),
            np.repeat(14, len(circle)),
        ],
        "gmsh:geometrical": [
            np.repeat(1, len(cells)),
            np.repeat(1, len(infl)),
            np.repeat(1, len(outfl)),
            np.repeat(1, len(walls)),
            np.repeat(1, len(circle)),
        ],
    },
    file_format="gmsh22",
    binary=False,
)

Periodic

<img alt="Periodic torus" src="https://user-images.githubusercontent.com/18619644/101163708-bfcb1200-3612-11eb-9c6d-4f664a754d01.png" width="30%">
# Repeat primitives to create more complex domains/shapes.
import SeismicMesh
import meshio

hmin = 0.30
bbox = (0.0, 10.0, 0.0, 10.0, 0.0, 10.0)
torus = SeismicMesh.Torus(r1=1.0, r2=0.5)
# the Repeat function takes a list specifying the repetition period in each dim
periodic_torus = SeismicMesh.Repeat(bbox, torus, [2.0, 2.0, 2.0])
points, cells = SeismicMesh.generate_mesh(domain=periodic_torus, edge_length=hmin)
points, cells = SeismicMesh.sliver_removal(
    points=points, domain=periodic_torus, edge_length=hmin
)
meshio.write_points_cells(
    "periodic_torus.vtk",
    points,
    [("tetra", cells)],
    file_format="vtk",
)

Rotations

<img alt="Rotated squares" src="https://user-images.githubusercontent.com/18619644/108713669-4e0ab200-74f7-11eb-925e-d92705327557.png" width="30%">
# Rotate squares in 2D
import numpy as np

import meshio
import SeismicMesh

bbox = (0.0, 1.0, 0.0, 1.0)
rotations = np.linspace(-3.14, 3.14, 40)
squares = []
for _, rotate in enumerate(rotations):
    squares.append(SeismicMesh.Rectangle(bbox, rotate=[rotate,0,0]))

rotated_squares = SeismicMesh.Union(squares)

points, cells = SeismicMesh.generate_mesh(domain=rotated_squares, edge_length=0.05)
meshio.write_points_cells(
    "rotated_squares" + str(rotate) + ".vtk",
    points,
    [("triangle", cells)],
    file_format="vtk",
)

<img alt="Rotated cubes" src="https://user-images.githubusercontent.com/18619644/108769631-03f5f080-7538-11eb-8db3-d215548496a8.png" width="30%">
# Same as above but for cubes
import numpy as np

import meshio
import SeismicMesh

bbox = (0.0, 1.0, 0.0, 1.0, 0.0, 1.0)
rotations = np.linspace(-3.14, 3.14, 40)
cubes = []
for _, rotate in enumerate(rotations):
    cubes.append(SeismicMesh.Cube(bbox, rotate=[rotate,0,0]))

rotated_cubes = SeismicMesh.Union(cubes)

points, cells = SeismicMesh.generate_mesh(domain=rotated_cubes, edge_length=0.10)
meshio.write_points_cells(
    "rotated_cubes.vtk",
    points,
    [("tetra", cells)],
    file_format="vtk",
)

Stretching

<img alt="Stretched squares" src="https://user-images.githubusercontent.com/18619644/109436519-ab729780-79fe-11eb-9656-1470f7c766b9.png" width="30%">
# Geometric primitives can be stretched (while being rotated)
import meshio

from SeismicMesh import *

domain = Rectangle((0.0, 1.0, 0.0, 1.0), stretch=[0.5, 2.0], rotate=0.1*3.14)

points, cells = generate_mesh(domain=domain, edge_length=0.1, verbose=2)

meshio.write_points_cells(
    "stretched_square.vtk",
    points,
    [("triangle", cells)],
    file_format="vtk",
)

Translation

<img alt="A translated cuboid" src="https://user-images.githubusercontent.com/18619644/110262382-45ec5100-7f92-11eb-844e-fc0a963a1541.png" width="30%">
# Geometric primitives can be translated (while being rotated and stretched)
import meshio

from SeismicMesh import *

cuboid = Cube(
    (0.0, 1.0, 0.0, 1.0, 0.1, 1.0),
    stretch=[1.5, 1.5, 1.5],
    translate=[0.5, 4.0, 1.0],
    rotate=4.5 * 3.14,
)
points, cells = generate_mesh(domain=cuboid, edge_length=0.10, max_iter=200)
points, cells = sliver_removal(points=points, domain=cuboid, edge_length=0.10, preserve=True)


meshio.write_points_cells(
    "stretched_square.vtk",
    points,
    [("tetra", cells)],
    file_format="vtk",
)

Checking

<img alt="Example of checking" src="https://user-images.githubusercontent.com/18619644/110243114-c336a800-7f37-11eb-813f-09c293bd721f.png" width="30%">

SeismicMesh's mesh generator is sensitive to poor geometry definitions and thus you should probably check it prior to complex expensive meshing. We enable all signed distance functions to be visualized via the domain.show() method where domain is an instance of a signed distance function primitive from SeismicMesh.geometry. Note: you can increase the number of samples to visualize the signed distance function by increasing the kwarg samples to the show method, which is by default set to 10000.

Parallelism

A simplified version of the parallel Delaunay algorithm proposed by Peterka et. al 2014 is implemented inside the DistMesh algorithm, which does not consider sophisticated domain decomposition or load balancing yet. A peak speed-up of approximately 6 times using 11 cores when performing 50 meshing iterations is observed to generate the 33M cell mesh of the EAGE P-wave velocity model. Parallel performance in 2D is better with peak speedups around 8 times using 11 cores. While the parallel performance is not perfect at this stage of development, the capability reduces the generation time of this relatively large example (e.g., 33 M cells) from 91.0 minutes to approximately 15.6 minutes. Results indicate that the simple domain decomposition approach inhibit perfect scalability. The machine used for this experiment was an Intel Xeon Gold 6148 machine clocked at 2.4 GHz with 192 GB of RAM connected together with a 100 Gb/s InfiniBand network.

To use parallelism see the docs

See the paper/paper.md and associated figures for more details.

Performance

**How does performance and cell quality compare to Gmsh and CGAL mesh generators?

Here we use SeismicMesh 3.1.4, pygalmesh 0.8.2, and pygmsh 7.0.0 (more details in the benchmarks folder).

Some key findings:

Summary of the benchmarks

**For an additional comparison of SeismicMesh against several other popular mesh generators head over to meshgen-comparison.

Changelog

The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

Unreleased

Added

Fixed

[3.6.1]-2021-05-22

Added

Improved

[3.5.0]-2021-03-09

Added

Fixed

Improved

[3.4.0]-2021-02-14

Added

Improved

[3.3.0]-2021-01-08

Added

Improved

[3.2.0] -2020-12-14

Added

Improved

[3.1.7] - 2020-11-27

Improved

Added

Fixed

[3.1.6] - 2020-11-26

Bug present with sliver removal. Recommend to not use.

Added

[3.1.5] - 2020-11-24

[3.1.4] - 2020-11-15

[3.1.3] - 2020-11-06

Fixed

Improved

[3.1.2] - 2020-11-04

Improved

Fixed

[3.1.0] - 2020-10-28

Added

Fixed

[3.0.6] - 2020-10-21

Fixed

Added

[3.0.5] - 2020-10-18

Fixed

Added

[3.0.4] - 2020-10-12

Added

More information

All other information is available at: https://seismicmesh.readthedocs.io

Getting started - Learn the basics about the program and the application domain.

Tutorials - Tutorials that will guide you through the main features.