Home

Awesome

<div align="center"> <img src="docs/logo.png" width="400" alt="nncase" /> </div>

GitHub repository Gitee repository GitHub release

切换中文

nncase is a neural network compiler for AI accelerators.

Telegram: nncase community Technical Discussion QQ Group: 790699378 . Answer: 人工智能


K230

Install

All version of nncase and nncase-kpu in Release.

Supported operators

benchmark test

<table> <tr> <th>kind</th> <th> model </th><th> shape </th><th> quant_type(If/W) </th><th> nncase_fps </th><th> tflite_onnx_result </th><th> accuracy </th><th> info </th></tr> <tr> <td rowspan='3'>Image Classification</td> <td>mobilenetv2 </td><td> [1,224,224,3] </td><td> u8/u8 </td><td> 600.24 </td><td> top-1 = 71.3%<br/>top-5 = 90.1% </td><td> top-1 = 71.1%<br/>top-5 = 90.0% </td><td> dataset(ImageNet 2012, 50000 images)<br/> tflite </td></tr> <tr><td>resnet50V2 </td><td> [1,3,224,224] </td><td> u8/u8 </td><td> 86.17 </td><td> top-1 = 75.44%<br/>top-5 = 92.56% </td><td> top-1 = 75.11% <br/> top-5 = 92.36% </td><td> dataset(ImageNet 2012, 50000 images)<br/> onnx</td></tr> <tr><td>yolov8s_cls </td><td> [1,3,224,224] </td><td> u8/u8 </td><td> 130.497 </td><td> top-1 = 72.2%<br/>top-5 = 90.9% </td><td> top-1 = 72.2%<br/>top-5 = 90.8% </td><td> dataset(ImageNet 2012, 50000 images)<br/> yolov8s_cls(v8.0.207)</td></tr> <tr> <td rowspan='2'>Object Detection</td> <td>yolov5s_det </td><td> [1,3,640,640] </td><td> u8/u8 </td><td> 23.645 </td><td> bbox<br/>mAP50-90 = 0.374<br/>mAP50 = 0.567 </td><td> bbox<br/>mAP50-90 = 0.369<br/>mAP50 = 0.566</td><td>dataset(coco val2017, 5000 images)<br/>yolov5s_det(v7.0 tag, rect=False, conf=0.001, iou=0.65)</td></tr> <tr><td>yolov8s_det </td><td> [1,3,640,640] </td><td> u8/u8 </td><td> 9.373 </td><td> bbox<br/>mAP50-90 = 0.446<br/>mAP50 = 0.612<br/>mAP75 = 0.484 </td><td> bbox<br/>mAP50-90 = 0.404<br/>mAP50 = 0.593<br/>mAP75 = 0.45</td><td>dataset(coco val2017, 5000 images)<br/>yolov8s_det(v8.0.207, rect = False)</td></tr> <tr> <td rowspan='1'>Image Segmentation</td> <td>yolov8s_seg </td><td> [1,3,640,640] </td><td> u8/u8 </td><td> 7.845 </td><td> bbox<br/>mAP50-90 = 0.444<br/>mAP50 = 0.606<br/>mAP75 = 0.484<br/>segm<br/>mAP50-90 = 0.371<br/>mAP50 = 0.578<br/>mAP75 = 0.396 </td><td> bbox<br/>mAP50-90 = 0.444<br/>mAP50 = 0.606<br/>mAP75 = 0.484<br/>segm<br/>mAP50-90 = 0.371<br/>mAP50 = 0.579<br/>mAP75 = 0.397</td><td> dataset(coco val2017, 5000 images)<br/>yolov8s_seg(v8.0.207, rect = False, conf_thres = 0.0008)</td></tr> <tr> <td rowspan='3'>Pose Estimation</td> <td>yolov8n_pose_320 </td><td> [1,3,320,320] </td><td> u8/u8 </td><td> 36.066 </td><td> bbox<br/>mAP50-90 = 0.6<br/>mAP50 = 0.843<br/>mAP75 = 0.654<br/>keypoints<br/>mAP50-90 = 0.358<br/>mAP50 = 0.646<br/>mAP75 = 0.353 </td><td> bbox<br/>mAP50-90 = 0.6<br/>mAP50 = 0.841<br/>mAP75 = 0.656<br/>keypoints<br/>mAP50-90 = 0.359<br/>mAP50 = 0.648<br/>mAP75 = 0.357 </td><td> dataset(coco val2017, 2346 images)<br/>yolov8n_pose(v8.0.207, rect = False)</td></tr> <tr><td>yolov8n_pose_640 </td><td> [1,3,640,640] </td><td> u8/u8 </td><td> 10.88 </td><td> bbox<br/>mAP50-90 = 0.694<br/>mAP50 = 0.909<br/>mAP75 = 0.776<br/>keypoints<br/>mAP50-90 = 0.509<br/>mAP50 = 0.798<br/>mAP75 = 0.544 </td><td> bbox<br/>mAP50-90 = 0.694<br/>mAP50 = 0.909<br/>mAP75 = 0.777<br/>keypoints<br/>mAP50-90 = 0.508<br/>mAP50 = 0.798<br/>mAP75 = 0.54 </td><td> dataset(coco val2017, 2346 images)<br/>yolov8n_pose(v8.0.207, rect = False)</td></tr> <tr><td>yolov8s_pose </td><td> [1,3,640,640] </td><td> u8/u8 </td><td> 5.568 </td><td> bbox<br/>mAP50-90 = 0.733<br/>mAP50 = 0.925<br/>mAP75 = 0.818<br/>keypoints<br/>mAP50-90 = 0.605<br/>mAP50 = 0.857<br/>mAP75 = 0.666 </td><td> bbox<br/>mAP50-90 = 0.734<br/>mAP50 = 0.925<br/>mAP75 = 0.819<br/>keypoints<br/>mAP50-90 = 0.604<br/>mAP50 = 0.859<br/>mAP75 = 0.669</td><td> dataset(coco val2017, 2346 images)<br/>yolov8s_pose(v8.0.207, rect = False)</td></tr> </table>

Demo

eye gazespace_resizeface pose
<img src="https://github.com/kendryte/nncase_docs/blob/master/gif/eye_gaze_result.gif?raw=true" alt="gif"><img src="https://github.com/kendryte/nncase_docs/blob/master/gif/space_resize.gif?raw=true" alt="gif"><img src="https://github.com/kendryte/nncase_docs/blob/master/gif/face_pose_result.gif?raw=true">

K210/K510

Supported operators


Features


Architecture

<div align="center"> <img src="docs/imgs/arch.jpeg" alt="nncase arch" /> </div>

Build from source

It is recommended to install nncase directly through pip. At present, the source code related to k510 and K230 chips is not open source, so it is not possible to use nncase-K510 and nncase-kpu (K230) directly by compiling source code.

If there are operators in your model that nncase does not yet support, you can request them in the issue or implement them yourself and submit the PR. Later versions will be integrated, or contact us to provide a temporary version. Here are the steps to compile nncase.

git clone https://github.com/kendryte/nncase.git
cd nncase
mkdir build && cd build

# Use Ninja
cmake .. -G Ninja -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=./install
ninja && ninja install

# Use make
cmake .. -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=./install
make && make install

Resources

Canaan developer community

Canaan developer community contains all resources related to K210, K510, and K230.

Bilibili

K210 related repo

K230 related repo