Awesome
raincloudplots <img src="https://github.com/jorvlan/open-visualizations/blob/master/R/package_figures/rainclouds_highres.png" width="150" height="160" align="right"/>
<!---[![R-CMD-check](https://github.com/jorvlan/raincloudplots/actions/workflows/R-CMD-check.yaml/badge.svg)](https://github.com/jorvlan/raincloudplots/actions/workflows/R-CMD-check.yaml)--->If you use this package for your research, please cite it, thank you.
Paper
<pre> - Allen, M., Poggiali, D., Whitaker, K., Marshall, T. R., van Langen, J., & Kievit, R. A. Raincloud plots: a multi-platform tool for robust data visualization [version 2; peer review: 2 approved] <b>Wellcome Open Research</b> 2021, 4:63. <a href="https://doi.org/10.12688/wellcomeopenres.15191.2">https://doi.org/10.12688/wellcomeopenres.15191.2</a> </pre>Background
It all started with the pre-print of raincloudplots in 2019 and accompanying GitHub repository RainCloudPlots. In the beginning of 2020, a tutorial called ‘open-visualizations’ was released and turned out to be a valuable addition to the previously published pre-print. This tutorial provides detailed and extensive R code to create robust and transparent repeated measures visualizations, by showing the slope change for each individual data point over time. To date (13-01-2021), this tutorial has been cited in 20 scientific papers. However, using this tutorial requires sufficient R programming knowledge and might therefore not be suitable for non-R experts. Therefore, we have created this dedicated raincloudplots package. This package is tailored towards easy visualization of grouped and repeated measures data. Moreover, it also provides individually linked repeated measures visualizations, which add detail and richness to a multitude of between/within-subject designs.
Package demonstration
- Tested on macOS with R version >= 4.0.3
- Tested on Windows with R version >= 4.0.3
- Researchers that would like to visualize more complex repeated measures designs, for instance with more groups and more time-points, please see our extensive tutorials:
- <a href="https://github.com/jorvlan/open-visualizations">https://github.com/jorvlan/open-visualizations</a>
- <a href="https://github.com/RainCloudPlots/RainCloudPlots">https://github.com/RainCloudPlots/RainCloudPlots</a>
Updates
<pre> - <b> January 2024</b> We have written a ggplot2-extension R-package <a href="https://github.com/njudd/ggrain">https://github.com/njudd/ggrain</a> which allows users to create Raincloud plots - following the 'Grammar of Graphics'. Please visit our newest repository at: <a href="https://github.com/njudd/ggrain">https://github.com/njudd/ggrain</a> - <b>February 2021 (version 0.2.0)</b> It is now possible to make raincloudplots with unequal 'between-group' comparisons (e.g., group1: 50 data-points, group2: 40 data-points) This is not possible for 'repeated-measures' between-timepoints (e.g., pre-post) connected by intra-individual lines `raincloudplots`. </pre>Installation
if (!require(remotes)) {
install.packages("remotes")
}
remotes::install_github('jorvlan/raincloudplots')
library(raincloudplots)
Raincloud 1 x 1
Step 1: Initialize the data-format
data_1x1
creates the long-format data.frame that is needed for 1-by-1 rainclouds.array_1
the first array of datapoints to be plottedarray_2
the second array of datapoints to be plottedjit_distance
the amount of distance between jittered datapoints (0.9 by default)jit_seed
the amount used in set.seed() (321 by default)
df_1x1 <- data_1x1(
array_1 = iris$Sepal.Length[1:50],
array_2 = iris$Sepal.Length[51:100],
jit_distance = .09,
jit_seed = 321)
> head(df_1x1)
y_axis x_axis id jit
1 5.1 1 1 1.0820609
2 4.9 1 2 1.0787114
3 4.7 1 3 0.9528797
4 4.6 1 4 0.9559133
5 5.0 1 5 0.9802922
6 5.4 1 6 0.9714124
> tail(df_1x1)
y_axis x_axis id jit
95 5.6 2 45 2.059387
96 5.7 2 46 2.004848
97 5.7 2 47 2.066980
98 6.2 2 48 2.074479
99 5.1 2 49 1.939248
100 5.7 2 50 1.999004
Step 2: Create a vertical or horizontal 1 x 1 raincloudplot
raincloud_1x1
creates the 1-by-1 comparison for grouped data.data
the data.frame created withdata_1x1
colors
concatenated string for both colorsfills
concatenated string for both both fillssize
size of the dataalpha
alpha of the dataort
vertical or horizontal display of rainclouds
raincloud_1_h <- raincloud_1x1(
data = df_1x1,
colors = (c('dodgerblue','darkorange')),
fills = (c('dodgerblue','darkorange')),
size = 1,
alpha = .6,
ort = 'h') +
scale_x_continuous(breaks=c(1,2), labels=c("Group1", "Group2"), limits=c(0, 3)) +
xlab("Groups") +
ylab("Score") +
theme_classic()
raincloud_1_h
raincloud_1_v <- raincloud_1x1(
data = df_1x1,
colors = (c('dodgerblue','darkorange')),
fills = (c('dodgerblue','darkorange')),
size = 1,
alpha = .6,
ort = 'v') +
scale_x_continuous(breaks=c(1,2), labels=c("Group1", "Group2"), limits=c(0, 3)) +
xlab("Groups") +
ylab("Score") +
theme_classic()
raincloud_1_v
Raincloud 1 x 1 repeated measures
raincloud_1x1_repmes
creates a 1-by-1 repeated measures raincloud.data
the data.frame created withdata_1x1
colors
concatenated string for both colorsfills
concatenated string for both fillsline_color
color of the linesline_alpha
alpha of the linessize
size of the dataalpha
alpha of the dataalign_clouds
FALSE if spreaded on different x-axis ticks, TRUE if aligned on same x-axis tick
raincloud_2 <- raincloud_1x1_repmes(
data = df_1x1,
colors = (c('dodgerblue', 'darkorange')),
fills = (c('dodgerblue', 'darkorange')),
line_color = 'gray',
line_alpha = .3,
size = 1,
alpha = .6,
align_clouds = FALSE) +
scale_x_continuous(breaks=c(1,2), labels=c("Pre", "Post"), limits=c(0, 3)) +
xlab("Time") +
ylab("Score") +
theme_classic()
raincloud_2
raincloud_2_aligned <- raincloud_1x1_repmes(
data = df_1x1,
colors = (c('dodgerblue', 'darkorange')),
fills = (c('dodgerblue', 'darkorange')),
line_color = 'gray',
line_alpha = .3,
size = 1,
alpha = .6,
align_clouds = TRUE) +
scale_x_continuous(breaks=c(1,2), labels=c("Pre", "Post"), limits=c(0, 3)) +
xlab("Time") +
ylab("Score") +
theme_classic()
raincloud_2_aligned
Raincloud 2 x 2 repeated measures
Step 1: Initialize the data-format
data_2x2
creates the long-format data.frame needed for 2 x 2 repeated measures rainclouds.array_1
the first array of datapoints to be plottedarray_2
the second array of datapoints to be plottedarray_3
the array of datapoints to be plottedarray_4
the array of datapoints to be plottedarray_5
the array of datapoints to be plotted (OPTIONAL: only needed for 2x3 repeated measures, see below)array_6
the array of datapoints to be plotted (OPTIONAL: only needed for 2x3 repeated measures, see below)labels
concatenated string of both group labelsspread_x_ticks
FALSE if 2 x-ticks, TRUE if 4 x-ticksjit_distance
the amount of distance between jittered datapoints (0 by default)jit_seed
the amount used in set.seed() (321 by default)
df_2x2 <- data_2x2(
array_1 = iris$Sepal.Length[1:50],
array_2 = iris$Sepal.Length[51:100],
array_3 = iris$Sepal.Length[101:150],
array_4 = iris$Sepal.Length[81:130],
labels = (c('congruent','incongruent')),
jit_distance = .09,
jit_seed = 321,
spread_x_ticks = FALSE)
> head(df_2x2)
y_axis x_axis id group jit
1 5.1 1 1 congruent 1.0820609
2 4.9 1 2 congruent 1.0787114
3 4.7 1 3 congruent 0.9528797
4 4.6 1 4 congruent 0.9559133
5 5.0 1 5 congruent 0.9802922
6 5.4 1 6 congruent 0.9714124
> tail(df_2x2)
y_axis x_axis id group jit
195 6.7 2.01 45 incongruent 2.056353
196 7.2 2.01 46 incongruent 1.975210
197 6.2 2.01 47 incongruent 2.011292
198 6.1 2.01 48 incongruent 2.013551
199 6.4 2.01 49 incongruent 1.961014
200 7.2 2.01 50 incongruent 2.086574
df_2x2_spread <- data_2x2(
array_1 = iris$Sepal.Length[1:50],
array_2 = iris$Sepal.Length[51:100],
array_3 = iris$Sepal.Length[101:150],
array_4 = iris$Sepal.Length[81:130],
labels = (c('congruent','incongruent')),
jit_distance = .09,
jit_seed = 321,
spread_x_ticks = TRUE)
> head(df_2x2_spread)
y_axis x_axis id group jit
1 5.1 1 1 congruent 1.0820609
2 4.9 1 2 congruent 1.0787114
3 4.7 1 3 congruent 0.9528797
4 4.6 1 4 congruent 0.9559133
5 5.0 1 5 congruent 0.9802922
6 5.4 1 6 congruent 0.9714124
> tail(df_2x2_spread)
y_axis x_axis id group jit
195 6.7 4 45 incongruent 4.046353
196 7.2 4 46 incongruent 3.965210
197 6.2 4 47 incongruent 4.001292
198 6.1 4 48 incongruent 4.003551
199 6.4 4 49 incongruent 3.951014
200 7.2 4 50 incongruent 4.076574
Step 2: Create a raincloud plot with 4 x-ticks or with 2 x-ticks
raincloud_2x2 <- raincloud_2x2_repmes(
data = df_2x2,
colors = (c('dodgerblue', 'darkorange', 'dodgerblue', 'darkorange')),
fills = (c('dodgerblue', 'darkorange', 'dodgerblue', 'darkorange')),
size = 1,
alpha = .6,
spread_x_ticks = FALSE) +
scale_x_continuous(breaks=c(1,2), labels=c("Pre", "Post"), limits=c(0, 3)) +
xlab("Time") +
ylab("Score") +
theme_classic()
raincloud_2x2
raincloud_2x2_spread <- raincloud_2x2_repmes(
data = df_2x2_spread,
colors = (c('dodgerblue', 'darkorange', 'dodgerblue', 'darkorange')),
fills = (c('dodgerblue', 'darkorange', 'dodgerblue', 'darkorange')),
line_color = 'gray',
line_alpha = .3,
size = 1,
alpha = .6,
spread_x_ticks = TRUE) +
scale_x_continuous(breaks=c(1,2,3,4), labels=c("Pre", "Post", "Pre", "Post"), limits=c(0, 5)) +
xlab("Time") +
ylab("Score") +
theme_classic()
raincloud_2x2_spread
Raincloud 2 x 3 (repeated measures)
Step 1: Initialize the data-format
df_2x3 <- data_2x2(
array_1 = iris$Sepal.Length[1:50],
array_2 = iris$Sepal.Length[51:100],
array_3 = iris$Sepal.Length[101:150],
array_4 = iris$Sepal.Length[81:130],
array_5 = iris$Sepal.Length[21:70],
array_6 = iris$Sepal.Length[41:90],
labels = (c('congruent','incongruent')),
jit_distance = .05,
jit_seed = 321)
> head(df_2x3)
y_axis x_axis id group jit
1 5.1 1 1 congruent 1.0455894
2 4.9 1 2 congruent 1.0437286
3 4.7 1 3 congruent 0.9738220
4 4.6 1 4 congruent 0.9755074
5 5.0 1 5 congruent 0.9890512
6 5.4 1 6 congruent 0.9841180
> tail(df_2x3)
y_axis x_axis id group jit
295 5.4 3.01 45 incongruent 3.055610
296 6.0 3.01 46 incongruent 3.047695
297 6.7 3.01 47 incongruent 3.058535
298 6.3 3.01 48 incongruent 3.005049
299 5.6 3.01 49 incongruent 2.978512
300 5.5 3.01 50 incongruent 2.967493
Step 2: Create a vertical or horizontal 2 x 3 Raincloud
raincloud_2x3_vertical <- raincloud_2x3_repmes(
data = df_2x3,
colors = (c('dodgerblue', 'darkorange', 'dodgerblue',
'darkorange', 'dodgerblue', 'darkorange')),
fills = (c('dodgerblue', 'darkorange', 'dodgerblue',
'darkorange', 'dodgerblue', 'darkorange')),
size = 1,
alpha = .6,
ort = 'v') +
scale_x_continuous(breaks=c(1,2,3), labels=c("T-1", "T-2", "T-3"), limits=c(0, 4)) +
xlab("Time") +
ylab("Score") +
theme_classic()
raincloud_2x3_vertical
raincloud_2x3_horizontal <- raincloud_2x3_repmes(
data = df_2x3,
colors = (c('dodgerblue', 'darkorange', 'dodgerblue',
'darkorange', 'dodgerblue', 'darkorange')),
fills = (c('dodgerblue', 'darkorange', 'dodgerblue',
'darkorange', 'dodgerblue', 'darkorange')),
size = 1,
alpha = .6,
ort = 'h') +
scale_x_continuous(breaks=c(1,2,3), labels=c("T-1", "T-2", "T-3"), limits=c(0, 4)) +
xlab("Time") +
ylab("Score") +
theme_classic()
raincloud_2x3_horizontal