Awesome
NAME
Workflow - Simple, flexible system to implement workflows
VERSION
This documentation describes version 2.01 of Workflow
SYNOPSIS
use Workflow::Factory qw( FACTORY );
# Defines a workflow of type 'myworkflow'
my $workflow_conf = 'workflow.xml';
# contents of 'workflow.xml'
<workflow>
<type>myworkflow</type>
<time_zone>local</time_zone> <!-- optional -->
<description>This is my workflow.</description> <!-- optional -->
<history_class>My::Workflow::History</history_class> <!-- optional -->
<state name="INITIAL">
<action name="upload file" resulting_state="uploaded" />
</state>
<state name="uploaded" autorun="yes">
<action name="verify file" resulting_state="verified file">
<!-- everyone other than 'CWINTERS' must verify -->
<condition test="$context->{user} ne 'CWINTERS'" />
</action>
<action name="null" resulting_state="annotated">
<condition test="$context->{user} eq 'CWINTERS'" />
</action>
</state>
<state name="verified file">
<action name="annotate">
<condition name="can_annotate" />
</action>
<action name="null">
<condition name="!can_annotate" />
</action>
</state>
<state name="annotated" autorun="yes" may_stop="yes">
<action name="null" resulting_state="finished">
<condition name="completed" />
</action>
</state>
<state name="finished" />
</workflow>
# Defines actions available to the workflow
my $action_conf = 'action.xml';
# contents of 'action.xml'
<actions>
<action name="upload file" class="MyApp::Action::Upload">
<field name="path" label="File Path"
description="Path to file" is_required="yes" />
</action>
<action name="verify file" class="MyApp::Action::Verify">
<validator name="filesize_cap">
<arg>$file_size</arg>
</validator>
</action>
<action name="annotate" class="MyApp::Action::Annotate" />
<action name="null" class="Workflow::Action::Null" />
</actions>
# Defines conditions available to the workflow
my $condition_conf = 'condition.xml';
# contents of 'condition.xml'
<conditions>
<condition name="can_annotate"
class="MyApp::Condition::CanAnnotate" />
</conditions>
# Defines validators available to the actions
my $validator_conf = 'validator.xml';
# contents of 'validator.xml'
<validators>
<validator name="filesize_cap" class="MyApp::Validator::FileSizeCap">
<param name="max_size" value="20M" />
</validator>
</validators>
# Stock the factory with the configurations; we can add more later if
# we want
$self->_factory()->add_config_from_file(
workflow => $workflow_conf,
action => $action_conf,
condition => $condition_conf,
validator => $validator_conf
);
# Instantiate a new workflow...
my $workflow = $self->_factory()->create_workflow( 'myworkflow' );
print "Workflow ", $workflow->id, " ",
"currently at state ", $workflow->state, "\n";
# Display available actions...
print "Available actions: ", $workflow->get_current_actions, "\n";
# Get the data needed for action 'upload file' (assumed to be
# available in the current state) and display the fieldname and
# description
print "Action 'upload file' requires the following fields:\n";
foreach my $field ( $workflow->get_action_fields( 'FOO' ) ) {
print $field->name, ": ", $field->description,
"(Required? ", $field->is_required, ")\n";
}
# Add data to the workflow context for the validators, conditions and
# actions to work with
my $context = $workflow->context;
$context->param( current_user => $user );
$context->param( sections => \@sections );
# Execute one of them
$workflow->execute_action( 'upload file',
{ path => $path_to_file });
print "New state: ", $workflow->state, "\n";
# Later.... fetch an existing workflow
my $id = get_workflow_id_from_user( ... );
my $workflow = $self->_factory()->fetch_workflow( 'myworkflow', $id );
print "Current state: ", $workflow->state, "\n";
QUICK START
The eg/ticket/
directory contains a configured workflow system.
You can access the same data and logic in two ways:
- a command-line application (ticket.pl)
- a CGI script (ticket.cgi)
- a web application (ticket_web.pl)
To initialize:
perl ticket.pl --db
To run the command-line application:
perl ticket.pl
To access the database and data from CGI, add the relevant configuration for your web server and call ticket.cgi:
http://www.mysite.com/workflow/ticket.cgi
To start up the standalone web server:
perl ticket_web.pl
(Barring changes to HTTP::Daemon and forking the standalone server won't work on Win32; use CGI instead, although patches are always welcome.)
For more info, see eg/ticket/README
DESCRIPTION
Overview
This is a standalone workflow system. It is designed to fit into your system rather than force your system to fit to it. You can save workflow information to a database or the filesystem (or a custom storage). The different components of a workflow system can be included separately as libraries to allow for maximum reusibility.
User Point of View
As a user you only see two components, plus a third which is really embedded into another:
- Workflow::Factory - The factory is your interface for creating new workflows and fetching existing ones. You also feed all the necessary configuration files and/or data structures to the factory to initialize it.
- Workflow - When you get the workflow object from the workflow factory you can only use it in a few ways -- asking for the current state, actions available for the state, data required for a particular action, and most importantly, executing a particular action. Executing an action is how you change from one state to another.
- Workflow::Context - This is a blackboard for data from your application to the workflow system and back again. Each instantiation of a Workflow has its own context, and actions executed by the workflow can read data from and deposit data into the context.
Developer Point of View
The workflow system has four basic components:
-
workflow - The workflow is a collection of states; you define the states, how to move from one state to another, and under what conditions you can change states.
This is represented by the Workflow object. You normally do not need to subclass this object for customization.
-
action - The action is defined by you or in a separate library. The action is triggered by moving from one state to another and has access to the workflow and more importantly its context.
The base class for actions is the Workflow::Action class.
-
condition - Within the workflow you can attach one or more conditions to an action. These ensure that actions only get executed when certain conditions are met. Conditions are completely arbitrary: typically they will ensure the user has particular access rights, but you can also specify that an action can only be executed at certain times of the day, or from certain IP addresses, and so forth. Each condition is created once at startup then passed a context to check every time an action is checked to see if it can be executed.
The base class for conditions is the Workflow::Condition class.
-
validator - An action can specify one or more validators to ensure that the data available to the action is correct. The data to check can be as simple or complicated as you like. Each validator is created once then passed a context and data to check every time an action is executed.
The base class for validators is the Workflow::Validator class.
WORKFLOW BASICS
Just a Bunch of States
A workflow is just a bunch of states with rules on how to move between them. These are known as transitions and are triggered by some sort of event. A state is just a description of object properties. You can describe a surprisingly large number of processes as a series of states and actions to move between them. The application shipped with this distribution uses a fairly common application to illustrate: the trouble ticket.
When you create a workflow you have one action available to you: create a new ticket ('create issue'). The workflow has a state 'INITIAL' when it is first created, but this is just a bootstrapping exercise since the workflow must always be in some state.
The workflow action 'create issue' has a property 'resulting_state', which just means: if you execute me properly the workflow will be in the new state 'CREATED'.
All this talk of 'states' and 'transitions' can be confusing, but just match them to what happens in real life -- you move from one action to another and at each step ask: what happens next?
You create a trouble ticket: what happens next? Anyone can add comments to it and attach files to it while administrators can edit it and developers can start working on it. Adding comments does not really change what the ticket is, it just adds information. Attachments are the same, as is the admin editing the ticket.
But when someone starts work on the ticket, that is a different matter. When someone starts work they change the answer to: what happens next? Whenever the answer to that question changes, that means the workflow has changed state.
Discover Information from the Workflow
In addition to declaring what the resulting state will be from an action the action also has a number of 'field' properties that describe that data it required to properly execute it.
This is an example of discoverability. This workflow system is setup so you can ask it what you can do next as well as what is required to move on. So to use our ticket example we can do this, creating the workflow and asking it what actions we can execute right now:
my $wf = Workflow::$self->_factory()->create_workflow( 'Ticket' );
my @actions = $wf->get_current_actions;
We can also interrogate the workflow about what fields are necessary to execute a particular action:
print "To execute the action 'create issue' you must provide:\n\n";
my @fields = $wf->get_action_fields( 'create issue' );
foreach my $field ( @fields ) {
print $field->name, " (Required? ", $field->is_required, ")\n",
$field->description, "\n\n";
}
Provide Information to the Workflow
To allow the workflow to run into multiple environments we must have a common way to move data between your application, the workflow and the code that moves it from one state to another.
Whenever the Workflow::Factory creates a new workflow it associates the workflow with a Workflow::Context object. The context is what moves the data from your application to the workflow and the workflow actions.
For instance, the workflow has no idea what the 'current user' is. Not only is it unaware from an application standpoint but it does not presume to know where to get this information. So you need to tell it, and you do so through the context.
The fact that the workflow system proscribes very little means it can be used in lots of different applications and interfaces. If a system is too closely tied to an interface (like the web) then you have to create some potentially ugly hacks to create a more convenient avenue for input to your system (such as an e-mail approving a document).
The Workflow::Context object is extremely simple to use -- you ask a workflow for its context and just get/set parameters on it:
# Get the username from the Apache object
my $username = $r->connection->user;
# ...set it in the context
$wf->context->param( user => $username );
# somewhere else you'll need the username:
$news_object->{created_by} = $wf->context->param( 'user' );
Controlling What Gets Executed
A typical process for executing an action is:
- Get data from the user
- Fetch a workflow
- Set the data from the user to the workflow context
- Execute an action on the context
When you execute the action a number of checks occur. The action needs to ensure:
- The data presented to it are valid -- date formats, etc. This is done with a validator, more at Workflow::Validator
- The environment meets certain conditions -- user is an administrator, etc. This is done with a condition, more at Workflow::Condition
Once the action passes these checks and successfully executes we update the permanent workflow storage with the new state, as long as the application has declared it.
WORKFLOWS ARE OBSERVABLE
Purpose
It's useful to have your workflow generate events so that other parts of a system can see what's going on and react. For instance, say you have a new user creation process. You want to email the records of all users who have a first name of 'Sinead' because you're looking for your long-lost sister named 'Sinead'. You'd create an observer class like:
package FindSinead;
sub update {
my ( $class, $wf, $event, $event_args ) = @_;
return unless ( $event eq 'state change' );
return unless ( $event_args->{to} eq 'CREATED' );
my $context = $wf->context;
return unless ( $context->param( 'first_name' ) eq 'Sinead' );
my $user = $context->param( 'user' );
my $username = $user->username;
my $email = $user->email;
my $mailer = get_mailer( ... );
$mailer->send( 'foo@bar.com','Found her!',
"We found Sinead under '$username' at '$email' );
}
And then associate it with your workflow:
<workflow>
<type>SomeFlow</type>
<observer class="FindSinead" />
...
Every time you create/fetch a workflow the associated observers are attached to it.
Events Generated
You can attach listeners to workflows and catch events at a few points in the workflow lifecycle; these are the events fired:
-
create - Issued after a workflow is first created.
No additional parameters.
-
fetch - Issued after a workflow is fetched from the persister.
No additional parameters.
-
startup - Issued at the beginning of the execute loop, before the first action is called.
No additional parameters.
-
finalize - Issued at the end of the execute loop, after all action are handled.
No additional parameters.
-
run - Issued before a single action is executed. Will be followed by either a
save
orrollback
event.No additional parameters.
-
save - Issued after the workflow was saved after running a single action.
No additional parameters.
-
rollback - Issued after the execution of a single action failed.
No additional parameters.
-
completed - Issued after a single action was successfully executed and saved.
Receives a hashref as second parameter holding the keys
state
andaction
.$state
includes the state of the workflow before the action was executed,$action
is the action name that was executed. -
state change - Issued after a single action is successfully executed, saved and results in a state change. The event will not be fired if you executed an action that did not result in a state change.
Receives a hashref as second parameter. The key
from
holds the name of the state before the action,action
is the name of the action that was executed andto
holding the name of the target (current) state. -
add history - Issued after one or more history objects were added to a workflow object.
The additional argument is an arrayref of all Workflow::History objects added to the workflow. (Note that these will not be persisted until the workflow is persisted.)
Configuring
You configure the observers directly in the 'workflow' configuration item. Each 'observer' may have either a 'class' or 'sub' entry within it that defines the observer's location.
We load these classes at startup time. So if you specify an observer that doesn't exist you see the error when the workflow system is initialized rather than the system tries to use the observer.
For instance, the following defines two observers:
<workflow>
<type>ObservedItem</type>
<description>This is...</description>
<observer class="SomeObserver" />
<observer sub="SomeOtherObserver::Functions::other_sub" />
In the first declaration we specify the class ('SomeObserver') that
will catch observations using its update()
method. In the second
we're naming exactly the subroutine ('other_sub()' in the class
'SomeOtherObserver::Functions') that will catch observations.
All configured observers get all events. It's up to each observer to figure out what it wants to handle.
WORKFLOW METHODS
The following documentation is for the workflow object itself rather than the entire system.
Object Methods
execute_action( $action_name, $args )
Execute the action $action_name
. Typically this changes the state
of the workflow. If $action_name
is not in the current state, fails
one of the conditions on the action, or fails one of the validators on
the action an exception is thrown.
The $args
provided, are checked against the validators to ensure the
context remains in a valid state; upon successful validation, the $args
are merged into the context and the action is executed as described above.
After the action has been successfully executed and the workflow saved we issue a 'execute' observation with the old state, action name and an autorun flag as additional parameters. So if you wanted to write an observer you could create a method with the signature:
sub update {
my ( $class, $workflow, $action, $old_state, $action_name )
= @_;
if ( $action eq 'execute' ) { .... }
}
We also issue a 'change state' observation if the executed action resulted in a new state. See "WORKFLOWS ARE OBSERVABLE" above for how we use and register observers.
Returns: new state of workflow
get_current_actions( $group )
Returns a list of action names available from the current state for
the given environment. So if you keep your context()
the same if
you call execute_action()
with one of the action names you should
not trigger any condition error since the action has already been
screened for conditions.
If you want to divide actions in groups (for example state change group,
approval group, which have to be shown at different places on the page) add group property
to your action
<action name="terminate request" group="state change" class="MyApp::Action::Terminate" />
<action name="approve request" group="approval" class="MyApp::Action::Approve" />
my @actions = $wf->get_current_actions("approval");
$group
should be string that reperesents desired group name. In @actions you will get
list of action names available from the current state for the given environment limited by group.
$group
is optional parameter.
Returns: list of strings representing available actions
get_all_actions
Returns a list of ALL action names defined for the current state, weather or not they are available from the current environment.
Returns: list of strings representing available actions
get_action( $action_name )
Retrieves the action object associated with $action_name
in the
current workflow state. This will throw an exception if:
- No workflow state exists with a name of the current state. (This is usually some sort of configuration error and should be caught at initialization time, so it should not happen.)
- No action
$action_name
exists in the current state. - No action
$action_name
exists in the workflow universe. - One of the conditions for the action in this state is not met.
get_action_fields( $action_name )
Return a list of Workflow::InputField objects for the given
$action_name
. If $action_name
not in the current state or not
accessible by the environment an exception is thrown.
Returns: list of Workflow::InputField objects
add_history( @( \%params | $wf_history_object ) )
Adds any number of histories to the workflow, typically done by an
action in execute_action()
or one of the observers of that
action. This history will not be saved until execute_action()
is
complete.
You can add a list of either hashrefs with history information in them or full Workflow::History objects. Trying to add anything else will result in an exception and none of the items being added.
Successfully adding the history objects results in a 'add history' observation being thrown. See "WORKFLOWS ARE OBSERVABLE" above for more.
Returns: nothing
get_history()
Returns list of history objects for this workflow. Note that some may
be unsaved if you call this during the execute_action()
process.
get_unsaved_history()
Returns list of all unsaved history objects for this workflow.
clear_history()
Clears all transient history objects from the workflow object, not from the long-term storage.
set( $property, $value )
Method used to overwrite Class::Accessor so only certain callers can set properties caller has to be a Workflow namespace package.
Sets property to value or throws Workflow::Exception
Observer methods
add_observer( @observers )
Adds one or more observers to a Workflow
instance. An observer is a
function. See "notify_observers" for its calling convention.
This function is used internally by Workflow::Factory
to implement
observability as documented in the section "WORKFLOWS ARE OBSERVABLE"
notify_observers( @arguments )
Calls all observer functions registered through add_observer
with
the workflow as the first argument and @arguments
as the remaining
arguments:
$observer->( $wf, @arguments );
Used by various parts of the library to notify observers of workflow instance related events.
Properties
Unless otherwise noted, properties are read-only.
Configuration Properties
Some properties are set in the configuration file for each workflow. These remain static once the workflow is instantiated.
type
Type of workflow this is. You may have many individual workflows associated with a type or you may have many different types running in a single workflow engine.
description
Description (usually brief, hopefully with a URL...) of this workflow.
time_zone
Workflow uses the DateTime module to create all date objects. The time_zone parameter allows you to pass a time zone value directly to the DateTime new method for all cases where Workflow needs to create a date object. See the DateTime module for acceptable values.
Dynamic Properties
You can get the following properties from any workflow object.
id
ID of this workflow. This will always be defined, since when the Workflow::Factory creates a new workflow it first saves it to long-term storage.
state
The current state of the workflow.
last_update (read-write)
Date of the workflow's last update.
last_action_executed (read)
Contains the name of the action that was tried to be executed last, even if
the execution could not be completed due to e.g. failed parameter validation,
execption on code execution. Useful to find the step that failed when using
autorun sequences, as state
will return the state from which it was called.
context (read-write, see below)
A Workflow::Context object associated with this workflow. This should never be undefined as the Workflow::Factory sets an empty context into the workflow when it is instantiated.
If you add a context to a workflow and one already exists, the values from the new workflow will overwrite values in the existing workflow. This is a shallow merge, so with the following:
$wf->context->param( drinks => [ 'coke', 'pepsi' ] );
my $context = Workflow::Context->new();
$context->param( drinks => [ 'beer', 'wine' ] );
$wf->context( $context );
print 'Current drinks: ', join( ', ', @{ $wf->context->param( 'drinks' ) } );
You will see:
Current drinks: beer, wine
Internal Methods
init( $id, $current_state, \%workflow_config, \@wf_states )
THIS SHOULD ONLY BE CALLED BY THE Workflow::Factory. Do not call
this or the new()
method yourself -- you will only get an
exception. Your only interface for creating and fetching workflows is
through the factory.
This is called by the inherited constructor and sets the
$current_state
value to the property state
and uses the other
non-state values from \%config
to set parameters via the inherited
param()
.
_get_workflow_state( [ $state ] )
Return the Workflow::State object corresponding to $state
, which
defaults to the current state.
_set_workflow_state( $wf_state )
Assign the Workflow::State object $wf_state
to the workflow.
_get_next_state( $action_name )
Returns the name of the next state given the action
$action_name
. Throws an exception if $action_name
not contained
in the current state.
Initial workflow history
When creating an initial Workflow::History record when creating a workflow, several fields are required.
get_initial_history_data
This method returns a list of key/value pairs to add in the initial history record. The following defaults are returned:
-
user
value: "n/a"
-
description
value: "Create new workflow"
-
action
value: "Create workflow"
Override this method to change the values from their defaults. E.g.
sub get_initial_history_data {
return (
user => 1,
description => "none",
action => "run"
);
}
CONFIGURATION AND ENVIRONMENT
The configuration of Workflow is done using the format of your choice, currently XML and Perl are implemented, but additional formats can be added. Please refer to Workflow::Config, for implementation details.
Configuration examples
XML configuration
<workflow>
<type>myworkflow</type>
<class>My::Workflow</class> <!-- optional -->
<initial_state>INITIAL</initial_state> <!-- optional -->
<time_zone>local</time_zone> <!-- optional -->
<description>This is my workflow.</description> <!-- optional -->
<!-- List one or more states -->
<state name="INITIAL">
<action name="upload file" resulting_state="uploaded" />
<action name="cancel upload" resulting_state="finished" />
</state>
<state name="uploaded">
<action name="verify file">
<resulting_state return="redo" state="INITIAL" />
<resulting_state return="finished" state="finished"/>
</action>
</state>
<state name="finished" />
</workflow>
Logging
As of version 2.0, Workflow allows application developers to select their own
logging solution of preference: The library is a Log::Any log producer. See
Log::Any::Adapter for examples on how to configure logging. For those
wanting to keep running their Log::Log4perl configuration, please install
Log::Any::Adapter::Log4perl and add one use
statement and one line after
the initialization of Log::Log4perl
:
use Log::Log4perl;
use Log::Any::Adapter; # Add this additional use-statement
Log::Log4perl::init('/etc/log4perl.conf');
Log::Any::Adapter->set( 'Log4perl' ); # Additional: Log::Any initialization
DEPENDENCIES
The full list of dependencies is specified in the cpanfile in the distribution archive. Additional dependencies are listed by feature. The following features are currently supported by this distribution:
-
examples
The additional dependencies required to run the example applications.
INCOMPATIBILITIES
XML::Simple
CPAN testers reports however do demonstrate a problem with one of the dependencies of Workflow, namely XML::Simple.
The XML::Simple makes use of Lib::XML::SAX or XML::Parser, the default.
In addition XML::Parser can make use of plugin parsers and some of these might not be able to parse the XML utilized in Workflow. This problem has been observed with XML::SAX::RTF.
The following diagnostic points to the problem:
No _parse_* routine defined on this driver (If it is a filter, remember to
set the Parent property. If you call the parse() method, make sure to set a
Source. You may want to call parse_uri, parse_string or parse_file instead.)
Your XML::SAX configuration is located in the file:
XML/SAX/ParserDetails.ini
BUGS AND LIMITATIONS
Known bugs and limitations can be seen in the Github issue tracker:
https://github.com/jonasbn/perl-workflow/issues
BUG REPORTING
Bug reporting should be done either via Github issues
https://github.com/jonasbn/perl-workflow/issues
A list of currently known issues can be seen via the same URL.
TEST
The test suite can be run using prove
% prove --lib
Some of the tests are reserved for the developers and are only run of the
environment variable TEST_AUTHOR is set to true. Requirements for these tests
will only be installed through Dist::Zilla's authordeps
command:
% dzil authordeps --missing | cpanm --notest
The test to verify the (http/https) links in the POD documentation will only run when the variable POD_LINKS is set.
CODING STYLE
Currently the code is formatted using Perl::Tidy. The resource file can be downloaded from the central repository.
notes/perltidyrc
PROJECT
The Workflow project is currently hosted on GitHub
REPOSITORY
The code is kept under revision control using Git:
OTHER RESOURCES
COPYRIGHT
Copyright (c) 2003 Chris Winters and Arvato Direct; Copyright (c) 2004-2021 Chris Winters. All rights reserved.
This library is free software; you can redistribute it and/or modify it under the same terms as Perl itself.
AUTHORS
Jonas B. (jonasbn) jonasbn@cpan.org, current maintainer.
Chris Winters chris@cwinters.com, original author.
The following folks have also helped out (listed here in no particular order):
Thanks for to Michiel W. Beijen for fix to badly formatted URL, included in release 1.52
Several PRs (13 to be exact) from Erik Huelsmann resulting in release 1.49. Yet another batch of PRs resulted in release 1.50
PR from Mohammad S Anwar correcting some POD errors, included in release 1.49
Bug report from Petr Pisar resulted in release 1.48
Bug report from Tina Müller (tinita) resulted in release 1.47
Bug report from Slaven Rezić resulting in maintenance release 1.45
Feature and bug fix by dtikhonov resulting in 1.40 (first pull request on Github)
Sérgio Alves, patch to timezone handling for workflow history deserialized using DBI persister resulting in 1.38
Heiko Schlittermann for context serialization patch resulting in 1.36
Scott Harding, for lazy evaluation of conditions and for nested conditions, see Changes file: 1.35
Oliver Welter, patch implementing custom workflows, see Changes file: 1.35 and patch related to this in 1.37 and factory subclassing also in 1.35. Improvements in logging for condition validation in 1.43 and 1.44 and again a patch resulting in release 1.46
Steven van der Vegt, patch for autorun in initial state and improved exception handling for validators, see Changes file: 1.34_1
Andrew O'Brien, patch implementing dynamic reloaded of flows, see Changes file: 1.33
Sergei Vyshenski, bug reports - addressed and included in 1.33, Sergei also maintains the FreeBSD port
Alejandro Imass, improvements and clarifications, see Changes file: 1.33
Danny Sadinoff, patches to give better control of initial state and history records for workflow, see Changes file: 1.33
Thomas Erskine, for patch adding new accessors and fixing several bugs see Changes file 1.33
Ivan Paponov, for patch implementing action groups, see Changes file, 1.33
Robert Stockdale, for patch implementing dynamic names for conditions, see Changes file, 1.32
Jim Brandt, for patch to Workflow::Config::XML. See Changes file, 0.27 and 0.30
Alexander Klink, for: patches resulting in 0.23, 0.24, 0.25, 0.26 and 0.27
Michael Bell, for patch resulting in 0.22
Martin Bartosch, for bug reporting and giving the solution not even using a patch (0.19 to 0.20) and a patch resulting in 0.21
Randal Schwartz, for testing 0.18 and swiftly giving feedback (0.18 to 0.19)
Chris Brown, for a patch to Workflow::Config::Perl (0.17 to 0.18)
Dietmar Hanisch Dietmar.Hanisch@Bertelsmann.de - Provided most of the good ideas for the module and an excellent example of everyday use.
Tom Moertel tmoertel@cpan.org gave me the idea for being able to attach event listeners (observers) to the process.
Michael Roberts michael@vivtek.com graciously released the 'Workflow' namespace on CPAN; check out his Workflow toolkit at http://www.vivtek.com/wftk/.
Michael Schwern schwern@pobox.org barked via RT about a dependency problem and CPAN naming issue.
Jim Smith jgsmith@tamu.edu - Contributed patches (being able to subclass Workflow::Factory) and good ideas.
Martin Winkler mw@arsnavigandi.de - Pointed out a bug and a few other items.