Home

Awesome

<font size=5>MWSIS: Multimodal Weakly Supervised Instance Segmentation with 2D Box Annotations for Autonomous Driving</font>

⭐ Our MWSIS is acceped by the AAAI24.

Arxiv and Website

framework

<font size=4.5>ToDo</font>

<font size=4.5>News</font>

<font size=4.5>Instructions for MWSIS.</font>

# python version is 3.7

# install torch
pip3 install torch==1.8.2 torchvision==0.9.2 torchaudio==0.8.2 --extra-index-url https://download.pytorch.org/whl/lts/1.8/cu111

# install mmdet3d==1.0.0rc5 dependency
pip install mmcv-full==1.6.0 mmsegmentation==0.27.0 mmdet==2.25.1 spconv-cu111 open3d minio==7.1.11 pymongo==3.12.3 waymo-open-dataset-tf-2-6-0==1.4.9

# install mmdet3d
git clone https://github.com/open-mmlab/mmdetection3d.git
cd mmdetection3d
git checkout v1.0.0rc5
pip install -e .

# clone the mwsis repo
git clone https://github.com/jiangxb98/mwsis-plugin.git
cd mwsis-plugin

# install pairwise_loss
cd boxinst-plugin-main
pip install -e .
mv boxinst_plugin/ops/ /mwsis_plugin/ops

# install torchex https://github.com/tusen-ai/SST
cd torchex
pip install -e .

# install torch scatter
pip install torch-scatter==2.1.0

# install easydict
pip install easydict

# download the resnet50 checkpoint
wget https://download.openmmlab.com/pretrain/third_party/resnet50_msra-5891d200.pth
mv .pth .cache/torch/hub/checkpoints/

<font size=4.5>Data convert.</font>

Train data

Please follow the tutorial given by mmdet3d to process the data, and then use our waymo conversion code to process the data. (Note: You should mv ./mwsis_plugin/tools/data_converter/waymo_converter_local.py ./tools/data_converter)

Val data generation

Please use mwsis_plugin/tools/data_converter/parallel_mask3d_eval_local.py

<font size=4.5>How to train MWSIS.</font>

Note:

# signle gpu
python tools/train.py mwsis/config/mwsis_pts_model_config.py --work-dir <your filepath>

# multi gpu
bash tools/dist_train.sh ...

<font size=4.5>Acknowledgments</font>

This project is based on the following codebases.