Awesome
DiGA: Distributionally Generative Augmentation for Fair Facial Attribute Classification (CVPR 2024)
<!-- ## Introduction <img src="pics/method1.png" width="1200px"/> <img src="pics/method2.png" width="600px"/> --> <img src="pics/result.jpeg" width="1500px"/>Distributionally Generative Augmentation for Fair Facial Attribute Classification
https://arxiv.org/pdf/2403.06606
Set up
Installation
git clone https://github.com/heqianpei/DiGA.git
cd DiGA
Environment
The environment can be simply set up by Anaconda:
conda create -n DiGA python=3.8
conda activate DiGA
pip install torch==1.9.1+cu102 torchvision==0.10.1+cu102 torchaudio==0.9.1 -f https://download.pytorch.org/whl/torch_stable.html
pip install matplotlib
conda install ninja
conda install -c 3dhubs gcc-5
Bias Detection
Preparation
- Download datasets CelebA (Align&Cropped Images) and put dataset into
./data
. - Cut the datasets to get biased datasets.
python ./data/cut_dataset.py
- Download some pretrained models and put them in
./pretrained
.
Model | Description |
---|---|
StyleGAN2 (FFHQ) | Pretrained face generator on FFHQ from rosinality. |
e4e (FFHQ) | Pretrained initial encoder on FFHQ from omertov. |
Feature extractor | Pretrained IR-SE50 model taken from TreB1eN for ID loss calculation. |
Train Biased Generative Modeling
Modify option
and train_generative_model.sh
and run:
bash train_generative_model.sh
Get Semantic Directions and Optimal Combination Coefficients
Run grid_search.sh
to get the semantic directions, combine directions, edit some test images and choose optimal combination coefficients. The combination coefficients yielding the highest accuracy in the output are the optimal combination coefficients.
bash grid_search.sh
Bias Mitigation
- Change parameter $choose$ to optimal combination coefficient from
grid_search.sh
output. - Run
train_classifier.sh
to train fair encoder and train fair classifier.
bash train_classifier.sh
Citation
If you find this work useful for your research, please cite:
@inproceedings{
title={Distributionally Generative Augmentation for Fair Facial Attribute Classification},
author={Fengda Zhang, Qianpei He, Kun Kuang, Jiashuo Liu, Long Chen, Chao Wu, Jun Xiao, Hanwang Zhang},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2024}
}
Acknowledgement
Thanks to Tengfei-Wang for sharing their code.