Home

Awesome

STMTrack

This is the official implementation of the paper: STMTrack: Template-free Visual Tracking with Space-time Memory Networks.

Setup

conda create -n STMTrack python=3.7 -y
conda activate STMTrack
conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=10.0 -c pytorch
# pytorch v1.5.0, v1.6.0, or higher should also be OK. 
pip install -r requirements.txt

Test

├── STMTrack
|   ├── ...
|   ├── ...
|   ├── datasets
|   |   ├── COCO -> /opt/data/COCO
|   |   ├── GOT-10k -> /opt/data/GOT-10k
|   |   ├── ILSVRC2015 -> /opt/data/ILSVRC2015
|   |   ├── LaSOT -> /opt/data/LaSOT/LaSOTBenchmark
|   |   ├── OTB
|   |   |   └── OTB2015 -> /opt/data/OTB2015
|   |   ├── TrackingNet -> /opt/data/TrackingNet
|   |   ├── UAV123 -> /opt/data/UAV123/UAV123
|   |   ├── VOT
|   |   |   ├── vot2018
|   |   |   |   ├── VOT2018 -> /opt/data/VOT2018
|   |   |   |   └── VOT2018.json

i. Star notation(*): just for training. You can ignore these datasets if you just want to test the tracker.

ii. In this case, we create soft links for every dataset. The real storage location of all datasets is /opt/data/. You can change them according to your situation.

iii. The VOT2018.json file can be download from here.

General command format

python main/test.py --config testing_dataset_config_file_path

Take GOT-10k as an example:

python main/test.py --config experiments/stmtrack/test/got10k/stmtrack-googlenet-got.yaml

Training

training based on the GOT-10k benchmark

python main/train.py --config experiments/stmtrack/train/got10k/stmtrack-googlenet-trn.yaml

training with full data

python main/train.py --config experiments/stmtrack/train/fulldata/stmtrack-googlenet-trn-fulldata.yaml

Testing Results

Click here to download all the following.

Acknowledgement

Repository

This repository is developed based on the single object tracking framework video_analyst. See it for more instructions and details.

References

@inproceedings{fu2021stmtrack,
  title={STMTrack: Template-free Visual Tracking with Space-time Memory Networks},
  author={Fu, Zhihong and Liu, Qingjie and Fu, Zehua and Wang, Yunhong},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={13774--13783},
  year={2021}
}

Contact

If you have any questions, just create issues or email me:smile:.