Home

Awesome

<!--Do not modify this file. It is auto-generated from a template (infra/templates/README.md.jinja2)--> <p align="center"> <a href="https://feast.dev/"> <img src="docs/assets/feast_logo.png" width="550"> </a> </p> <br />

PyPI - Downloads GitHub contributors unit-tests integration-tests-and-build java-integration-tests linter Docs Latest Python API License GitHub Release

Join us on Slack!

👋👋👋 Come say hi on Slack!

Overview

Feast (Feature Store) is an open source feature store for machine learning. Feast is the fastest path to manage existing infrastructure to productionize analytic data for model training and online inference.

Feast allows ML platform teams to:

Please see our documentation for more information about the project.

📐 Architecture

The above architecture is the minimal Feast deployment. Want to run the full Feast on Snowflake/GCP/AWS? Click here.

🐣 Getting Started

1. Install Feast

pip install feast

2. Create a feature repository

feast init my_feature_repo
cd my_feature_repo/feature_repo

3. Register your feature definitions and set up your feature store

feast apply

4. Explore your data in the web UI (experimental)

Web UI

feast ui

5. Build a training dataset

from feast import FeatureStore
import pandas as pd
from datetime import datetime

entity_df = pd.DataFrame.from_dict({
    "driver_id": [1001, 1002, 1003, 1004],
    "event_timestamp": [
        datetime(2021, 4, 12, 10, 59, 42),
        datetime(2021, 4, 12, 8,  12, 10),
        datetime(2021, 4, 12, 16, 40, 26),
        datetime(2021, 4, 12, 15, 1 , 12)
    ]
})

store = FeatureStore(repo_path=".")

training_df = store.get_historical_features(
    entity_df=entity_df,
    features = [
        'driver_hourly_stats:conv_rate',
        'driver_hourly_stats:acc_rate',
        'driver_hourly_stats:avg_daily_trips'
    ],
).to_df()

print(training_df.head())

# Train model
# model = ml.fit(training_df)
            event_timestamp  driver_id  conv_rate  acc_rate  avg_daily_trips
0 2021-04-12 08:12:10+00:00       1002   0.713465  0.597095              531
1 2021-04-12 10:59:42+00:00       1001   0.072752  0.044344               11
2 2021-04-12 15:01:12+00:00       1004   0.658182  0.079150              220
3 2021-04-12 16:40:26+00:00       1003   0.162092  0.309035              959

6. Load feature values into your online store

CURRENT_TIME=$(date -u +"%Y-%m-%dT%H:%M:%S")
feast materialize-incremental $CURRENT_TIME
Materializing feature view driver_hourly_stats from 2021-04-14 to 2021-04-15 done!

7. Read online features at low latency

from pprint import pprint
from feast import FeatureStore

store = FeatureStore(repo_path=".")

feature_vector = store.get_online_features(
    features=[
        'driver_hourly_stats:conv_rate',
        'driver_hourly_stats:acc_rate',
        'driver_hourly_stats:avg_daily_trips'
    ],
    entity_rows=[{"driver_id": 1001}]
).to_dict()

pprint(feature_vector)

# Make prediction
# model.predict(feature_vector)
{
    "driver_id": [1001],
    "driver_hourly_stats__conv_rate": [0.49274],
    "driver_hourly_stats__acc_rate": [0.92743],
    "driver_hourly_stats__avg_daily_trips": [72]
}

📦 Functionality and Roadmap

The list below contains the functionality that contributors are planning to develop for Feast.

🎓 Important Resources

Please refer to the official documentation at Documentation

👋 Contributing

Feast is a community project and is still under active development. Please have a look at our contributing and development guides if you want to contribute to the project:

🌟 GitHub Star History

<p align="center"> <a href="https://star-history.com/#feast-dev/feast&Date"> <picture> <source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=feast-dev/feast&type=Date&theme=dark" /> <source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=feast-dev/feast&type=Date" /> <img alt="Star History Chart" src="https://api.star-history.com/svg?repos=feast-dev/feast&type=Date" /> </picture> </a> </p>

✨ Contributors

Thanks goes to these incredible people:

<a href="https://github.com/feast-dev/feast/graphs/contributors"> <img src="https://contrib.rocks/image?repo=feast-dev/feast" /> </a>