Awesome
Feast Trino Support
Trino is not included in current Feast roadmap, this project intends to add Trino support for Offline Store.
Version compatibilities
The feast-trino plugin is tested on the following versions of python [3.7, 3.8, 3.9]
Here is also how the current feast-trino plugin has been tested against different versions of Feast and Trino
Feast-trino | Feast | Trino |
---|---|---|
1.0.* | From 0.15.* to 0.16.* | 364 |
Quickstart
Install feast-trino
- Install stable version
pip install feast-trino
- Install develop version (not stable):
pip install git+https://github.com/shopify/feast-trino.git@main
Create a feature repository
feast init feature_repo
Edit feature_store.yaml
set offline_store
type to be feast_trino.TrinoOfflineStore
project: feature_repo
registry: data/registry.db
provider: local
offline_store:
type: feast_trino.trino.TrinoOfflineStore
host: localhost
port: 8080
catalog: memory
connector:
type: memory
online_store:
path: data/online_store.db
Create Trino Table
<!-- TODO -->Edit feature_repo/example.py
# This is an example feature definition file
import pandas as pd
from google.protobuf.duration_pb2 import Duration
from feast import Entity, Feature, FeatureView, FileSource, ValueType, FeatureStore
from feast_trino.connectors.upload import upload_pandas_dataframe_to_trino
from feast_trino import TrinoSource
from feast_trino.trino_utils import Trino
store = FeatureStore(repo_path="feature_repo")
client = Trino(
user="user",
catalog=store.config.offline_store.catalog,
host=store.config.offline_store.host,
port=store.config.offline_store.port,
)
client.execute_query("CREATE SCHEMA IF NOT EXISTS feast")
client.execute_query("DROP TABLE IF EXISTS feast.driver_stats")
input_df = pd.read_parquet("./feature_repo/data/driver_stats.parquet")
upload_pandas_dataframe_to_trino(
client=client,
df=input_df,
table_ref="feast.driver_stats",
connector_args={"type": "memory"},
)
# Read data from parquet files. Parquet is convenient for local development mode. For
# production, you can use your favorite DWH, such as BigQuery. See Feast documentation
# for more info.
driver_hourly_stats = TrinoSource(
event_timestamp_column="event_timestamp",
table_ref="feast.driver_stats",
created_timestamp_column="created",
)
# Define an entity for the driver. You can think of entity as a primary key used to
# fetch features.
driver = Entity(name="driver_id", value_type=ValueType.INT64, description="driver id",)
# Our parquet files contain sample data that includes a driver_id column, timestamps and
# three feature column. Here we define a Feature View that will allow us to serve this
# data to our model online.
driver_hourly_stats_view = FeatureView(
name="driver_hourly_stats",
entities=["driver_id"],
ttl=Duration(seconds=86400 * 1),
features=[
Feature(name="conv_rate", dtype=ValueType.FLOAT),
Feature(name="acc_rate", dtype=ValueType.FLOAT),
Feature(name="avg_daily_trips", dtype=ValueType.INT64),
],
online=True,
batch_source=driver_hourly_stats,
tags={},
)
store.apply([driver, driver_hourly_stats_view])
# Run an historical retrieval query
output_df = store.get_historical_features(
entity_df="""
SELECT
1004 AS driver_id,
TIMESTAMP '2021-11-21 15:00:00+00:00' AS event_timestamp
""",
features=["driver_hourly_stats:conv_rate"]
).to_df()
print(output_df.head())
Apply the feature definitions
python feature_repo/example.py
Developing and Testing
Developing
git clone https://github.com/shopify/feast-trino.git
cd feast-trino
# creating virtual env ...
python -v venv venv/
source venv/bin/activate
make build
# before commit
make format
make lint
Testing unit test
make start-local-cluster
make test
make kill-local-cluster
Note: You can visit http://localhost:8080/ui/ to access the Web UI of Trino. This makes it easy to look for queries.
Testing against Feast universal suite
make install-feast-submodule
make start-local-cluster
make test-python-universal
make kill-local-cluster
Using different versions of Feast or Trino
The makefile contains the following default values:
- FEAST_VERSION: v0.15.1
- TRINO_VERSION: 364
Thus, make install-feast-submodule
will automatically compile Feast v0.15.1
. If you want to try another version like v0.14.1
, you just need to run make install-feast-submodule FEAST_VERSION=v0.14.1
Same applies for TRINO_VERSION when you start the local cluster make start-local-cluster TRINO_VERSION=XXX
Troubleshooting
Error installing feast-trino on Apple M1 silicon
There are currently issues installing the grpcio
library on M1. See https://github.com/grpc/grpc/issues/25082
To fix this error, define these variables before running pip install feast-trino
:
export GRPC_PYTHON_BUILD_SYSTEM_OPENSSL=1
export GRPC_PYTHON_BUILD_SYSTEM_ZLIB=1