Home

Awesome

title


img img img img img img

Hikyuu Quant Framework是一款基于C++/Python的开源量化交易研究框架,用于策略分析及回测(目前主要用于国内A股市场)。其核心思想基于当前成熟的系统化交易方法,将整个系统化交易抽象为由市场环境判断策略、系统有效条件、信号指示器、止损/止盈策略、资金管理策略、盈利目标策略、移滑价差算法等组件,你可以分别构建这些组件的策略资产库,在实际研究中对它们自由组合来观察系统的有效性、稳定性以及单一种类策略的效果。

👉 项目地址:

👉 项目首页:https://hikyuu.org/

👉 帮助文档:https://hikyuu.readthedocs.io/zh-cn/latest/index.html

👉 入门示例: https://nbviewer.org/github/fasiondog/hikyuu/blob/master/hikyuu/examples/notebook/000-Index.ipynb?flush_cache=True

👉 策略部件库:https://gitee.com/fasiondog/hikyuu_hub

👉 感谢网友提供的 Hikyuu Ubuntu虚拟机环境, 百度网盘下载(提取码: ht8j): https://pan.baidu.com/s/1CAiUWDdgV0c0VhPpe4AgVw?pwd=ht8j

示例:

    #创建模拟交易账户进行回测,初始资金30万
    my_tm = crtTM(init_cash = 300000)

    #创建信号指示器(以5日EMA为快线,5日EMA自身的10日EMA作为慢线,快线向上穿越慢线时买入,反之卖出)
    my_sg = SG_Flex(EMA(CLOSE(), n=5), slow_n=10)

    #固定每次买入1000股
    my_mm = MM_FixedCount(1000)

    #创建交易系统并运行
    sys = SYS_Simple(tm = my_tm, sg = my_sg, mm = my_mm)
    sys.run(sm['sz000001'], Query(-150))

img

完整示例参见:https://nbviewer.jupyter.org/github/fasiondog/hikyuu/blob/master/hikyuu/examples/notebook/000-Index.ipynb?flush_cache=True

为什么选择 Hikyuu?

img

想要更多了解Hikyuu?请使用以下方式联系:

加入知识星球

更多示例与程序化交易的分享(您的加入将视为对项目的捐赠)。作者只保证对知识星球用户有问必答,其他渠道视情况。(公众号文章末尾可能不定期发放优惠券)

知识星球

关注公众号:

img

加入微信群(请注明“加入hikyuu”):

weixin

QQ交流群:114910869, 或扫码加入

img

项目依赖说明

Hikyuu直接依赖以下开源项目(由以下项目间接依赖的项目未列出),感谢所有开源作者的贡献:

名称项目地址License
xmakehttps://github.com/xmake-io/xmakeApache 2.0
hdf5https://github.com/HDFGroup/hdf5hdf5 license
mysql(client)https://github.com/mysql/mysql-servermysql license
fmthttps://github.com/fmtlib/fmtfmt license
spdloghttps://github.com/gabime/spdlogMIT
sqlitehttps://www.sqlite.org/sqlite license
flatbuffershttps://github.com/google/flatbuffersApache 2.0
nnghttps://github.com/nanomsg/nngMIT
nlohmann_jsonhttps://github.com/nlohmann/jsonMIT
boosthttps://www.boost.org/Boost Software License
pythonhttps://www.python.org/Python license
pybind11https://github.com/pybind/pybind11pybind11 license
gzip-hpphttps://github.com/mapbox/gzip-hppBSD-2-Clause license
doctesthttps://github.com/doctest/doctestMIT